石墨烯/六方氮化硼异质填料增强聚合物纳米复合材料界面导热性

IF 6.5 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Youzhe Yang , Richard (Chunhui) Yang , Huanzhi Song , Jie Yang , Yingyan Zhang
{"title":"石墨烯/六方氮化硼异质填料增强聚合物纳米复合材料界面导热性","authors":"Youzhe Yang ,&nbsp;Richard (Chunhui) Yang ,&nbsp;Huanzhi Song ,&nbsp;Jie Yang ,&nbsp;Yingyan Zhang","doi":"10.1016/j.coco.2025.102453","DOIUrl":null,"url":null,"abstract":"<div><div>Paraffin-based polymer nanocomposites, reinforced with thermally conductive nanofillers, have been widely utilized as cost-effective thermal interface materials (TIMs) for efficient heat management in electronic systems. In this study, we delve in new paraffin nanocomposites reinforced with graphene/h-BN (GBN) heterostructures for improving their thermal performance. Based on intensive reverse non-equilibrium molecular dynamics (RNEMD) simulations, we showed that the GBN-paraffin interfacial thermal conductance (ITC) is improved through modifications of GBN nanofillers with three functional groups – methyl (-CH<sub>3</sub>), hydroxyl (-OH) and carbon-doping (C-doping). From detailed mean squared displacement (MSD) and vibrational density of states (VDOS) analyses, we discovered that the -CH<sub>3</sub> functional group is the most effective strategy because it causes stronger phonon interactions and facilitates greater phonon coupling at the interface. Furthermore, effective medium theory (EMT) calculations unveil the intricate interplay between filler size and volume fraction in maximizing thermal conductivity. These findings provide valuable material design guidelines and insights into leveraging GBN as a high-efficiency thermal conductive filler for advanced thermal management applications.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"57 ","pages":"Article 102453"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene/hexagonal boron nitride hetero-fillers for enhanced interfacial thermal conductance in polymer nanocomposites\",\"authors\":\"Youzhe Yang ,&nbsp;Richard (Chunhui) Yang ,&nbsp;Huanzhi Song ,&nbsp;Jie Yang ,&nbsp;Yingyan Zhang\",\"doi\":\"10.1016/j.coco.2025.102453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Paraffin-based polymer nanocomposites, reinforced with thermally conductive nanofillers, have been widely utilized as cost-effective thermal interface materials (TIMs) for efficient heat management in electronic systems. In this study, we delve in new paraffin nanocomposites reinforced with graphene/h-BN (GBN) heterostructures for improving their thermal performance. Based on intensive reverse non-equilibrium molecular dynamics (RNEMD) simulations, we showed that the GBN-paraffin interfacial thermal conductance (ITC) is improved through modifications of GBN nanofillers with three functional groups – methyl (-CH<sub>3</sub>), hydroxyl (-OH) and carbon-doping (C-doping). From detailed mean squared displacement (MSD) and vibrational density of states (VDOS) analyses, we discovered that the -CH<sub>3</sub> functional group is the most effective strategy because it causes stronger phonon interactions and facilitates greater phonon coupling at the interface. Furthermore, effective medium theory (EMT) calculations unveil the intricate interplay between filler size and volume fraction in maximizing thermal conductivity. These findings provide valuable material design guidelines and insights into leveraging GBN as a high-efficiency thermal conductive filler for advanced thermal management applications.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"57 \",\"pages\":\"Article 102453\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213925002062\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925002062","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

石蜡基聚合物纳米复合材料经导热纳米填料增强后,作为一种具有成本效益的热界面材料(TIMs)被广泛应用于电子系统的高效热管理。在这项研究中,我们深入研究了石墨烯/h-BN (GBN)异质结构增强的新型石蜡纳米复合材料,以改善其热性能。基于密集的反向非平衡分子动力学(RNEMD)模拟,我们发现通过甲基(- ch3)、羟基(- oh)和碳掺杂(c掺杂)三个官能团修饰GBN纳米填料,可以改善GBN-石蜡界面导热性(ITC)。从详细的均方位移(MSD)和振动态密度(VDOS)分析中,我们发现-CH3官能团是最有效的策略,因为它引起更强的声子相互作用,并促进界面上更大的声子耦合。此外,有效介质理论(EMT)计算揭示了填料尺寸和体积分数在最大化导热系数方面的复杂相互作用。这些发现为利用GBN作为先进热管理应用的高效导热填料提供了有价值的材料设计指南和见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphene/hexagonal boron nitride hetero-fillers for enhanced interfacial thermal conductance in polymer nanocomposites
Paraffin-based polymer nanocomposites, reinforced with thermally conductive nanofillers, have been widely utilized as cost-effective thermal interface materials (TIMs) for efficient heat management in electronic systems. In this study, we delve in new paraffin nanocomposites reinforced with graphene/h-BN (GBN) heterostructures for improving their thermal performance. Based on intensive reverse non-equilibrium molecular dynamics (RNEMD) simulations, we showed that the GBN-paraffin interfacial thermal conductance (ITC) is improved through modifications of GBN nanofillers with three functional groups – methyl (-CH3), hydroxyl (-OH) and carbon-doping (C-doping). From detailed mean squared displacement (MSD) and vibrational density of states (VDOS) analyses, we discovered that the -CH3 functional group is the most effective strategy because it causes stronger phonon interactions and facilitates greater phonon coupling at the interface. Furthermore, effective medium theory (EMT) calculations unveil the intricate interplay between filler size and volume fraction in maximizing thermal conductivity. These findings provide valuable material design guidelines and insights into leveraging GBN as a high-efficiency thermal conductive filler for advanced thermal management applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信