完全二部图2色中的不可避免模式

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Adriana Hansberg , Denae Ventura
{"title":"完全二部图2色中的不可避免模式","authors":"Adriana Hansberg ,&nbsp;Denae Ventura","doi":"10.1016/j.dam.2025.05.018","DOIUrl":null,"url":null,"abstract":"<div><div>We determine the colored patterns that appear in any 2-edge coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>, with <span><math><mi>n</mi></math></span> large enough and with sufficient edges in each color. We prove the existence of a positive integer <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> such that any 2-edge coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> with at least <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> edges in each color contains at least one of these patterns. We give a general upper bound for <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and prove its tightness for some cases. We define the concepts of bipartite <span><math><mi>r</mi></math></span>-tonality and bipartite omnitonality using the complete bipartite graph as a base graph. We provide a characterization for bipartite <span><math><mi>r</mi></math></span>-tonal graphs and prove that every tree is bipartite omnitonal. Finally, we define the bipartite-balancing number and provide the exact bipartite-balancing number for paths and stars.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"374 ","pages":"Pages 50-60"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unavoidable patterns in 2-colorings of the complete bipartite graph\",\"authors\":\"Adriana Hansberg ,&nbsp;Denae Ventura\",\"doi\":\"10.1016/j.dam.2025.05.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We determine the colored patterns that appear in any 2-edge coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>, with <span><math><mi>n</mi></math></span> large enough and with sufficient edges in each color. We prove the existence of a positive integer <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> such that any 2-edge coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> with at least <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> edges in each color contains at least one of these patterns. We give a general upper bound for <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and prove its tightness for some cases. We define the concepts of bipartite <span><math><mi>r</mi></math></span>-tonality and bipartite omnitonality using the complete bipartite graph as a base graph. We provide a characterization for bipartite <span><math><mi>r</mi></math></span>-tonal graphs and prove that every tree is bipartite omnitonal. Finally, we define the bipartite-balancing number and provide the exact bipartite-balancing number for paths and stars.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"374 \",\"pages\":\"Pages 50-60\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002689\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002689","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们确定在Kn,n的任意两边着色中出现的彩色图案,其中n足够大并且每种颜色中都有足够的边。我们证明了正整数z2的存在性,使得Kn,n的任意两边着色在每种颜色中至少有z2条边包含至少一个这些模式。我们给出了z2的一般上界,并在某些情况下证明了它的紧性。以完全二部图为基图,定义了二部r-调性和二部全面性的概念。给出了二部r- tone图的一个表征,并证明了每棵树都是二部正交图。最后,我们定义了双平衡数,并给出了路径和恒星的精确双平衡数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unavoidable patterns in 2-colorings of the complete bipartite graph
We determine the colored patterns that appear in any 2-edge coloring of Kn,n, with n large enough and with sufficient edges in each color. We prove the existence of a positive integer z2 such that any 2-edge coloring of Kn,n with at least z2 edges in each color contains at least one of these patterns. We give a general upper bound for z2 and prove its tightness for some cases. We define the concepts of bipartite r-tonality and bipartite omnitonality using the complete bipartite graph as a base graph. We provide a characterization for bipartite r-tonal graphs and prove that every tree is bipartite omnitonal. Finally, we define the bipartite-balancing number and provide the exact bipartite-balancing number for paths and stars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信