{"title":"基于硼掺杂金刚石和多壁碳纳米管的饮料样品中咖啡因监测的快速、可重复使用和便携式电化学分析","authors":"Jelena Ostojić , Sladjana Savić , Dragan Manojlović , Radovan Metelka , Vesna Stanković , Dalibor Stanković","doi":"10.1016/j.diamond.2025.112450","DOIUrl":null,"url":null,"abstract":"<div><div>Despite potential health risks at high doses, caffeine remains the most widely consumed psychoactive drug globally, naturally occurring in more than 60 plants. Accurate determination of caffeine content is crucial to ensure the safety of consumers of caffeine-containing beverages. This work explores two different electrochemical sensors for caffeine determination: screen-printed carbon electrodes modified with multi-walled carbon nanotubes (MWCNT SPEs) and screen-printed sensors with boron-doped diamond electrodes prepared by chemical vapor deposition (BDD SPEs). These sensors offer advantages over traditional methods, potentially providing faster and more portable analysis. Two linear ranges for caffeine determination were observed at BDD SPEs in 0.5 M H<sub>2</sub>SO<sub>4</sub>. A lower linear range between 20 μM and 80 μM resulted in a limit of detection (LOD) of 3.40 μM and a limit of quantification (LOQ) of 10.30 μM, while a higher linear range between 100 μM to 500 μM provided the LOD of 9.72 μM and the LOQ of 29.45 μM of caffeine. MWCNT SPEs showed the optimal analytical parameters in the Britton-Robinson buffer at pH 2 with a broader linear range from 33 μM to 500 μM; the LOD was 8.65 μM, and the LOQ was 26.20 μM. The determination of caffeine content was successfully conducted in real dietary samples using both sensors, with validation by high-performance liquid chromatography (HPLC) and spectrophotometric analysis.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"156 ","pages":"Article 112450"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rapid, reusable, and portable electrochemical assay for caffeine monitoring in beverage samples based on boron doped diamond and multi walled carbon nanotubes\",\"authors\":\"Jelena Ostojić , Sladjana Savić , Dragan Manojlović , Radovan Metelka , Vesna Stanković , Dalibor Stanković\",\"doi\":\"10.1016/j.diamond.2025.112450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite potential health risks at high doses, caffeine remains the most widely consumed psychoactive drug globally, naturally occurring in more than 60 plants. Accurate determination of caffeine content is crucial to ensure the safety of consumers of caffeine-containing beverages. This work explores two different electrochemical sensors for caffeine determination: screen-printed carbon electrodes modified with multi-walled carbon nanotubes (MWCNT SPEs) and screen-printed sensors with boron-doped diamond electrodes prepared by chemical vapor deposition (BDD SPEs). These sensors offer advantages over traditional methods, potentially providing faster and more portable analysis. Two linear ranges for caffeine determination were observed at BDD SPEs in 0.5 M H<sub>2</sub>SO<sub>4</sub>. A lower linear range between 20 μM and 80 μM resulted in a limit of detection (LOD) of 3.40 μM and a limit of quantification (LOQ) of 10.30 μM, while a higher linear range between 100 μM to 500 μM provided the LOD of 9.72 μM and the LOQ of 29.45 μM of caffeine. MWCNT SPEs showed the optimal analytical parameters in the Britton-Robinson buffer at pH 2 with a broader linear range from 33 μM to 500 μM; the LOD was 8.65 μM, and the LOQ was 26.20 μM. The determination of caffeine content was successfully conducted in real dietary samples using both sensors, with validation by high-performance liquid chromatography (HPLC) and spectrophotometric analysis.</div></div>\",\"PeriodicalId\":11266,\"journal\":{\"name\":\"Diamond and Related Materials\",\"volume\":\"156 \",\"pages\":\"Article 112450\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diamond and Related Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925963525005072\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963525005072","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
A rapid, reusable, and portable electrochemical assay for caffeine monitoring in beverage samples based on boron doped diamond and multi walled carbon nanotubes
Despite potential health risks at high doses, caffeine remains the most widely consumed psychoactive drug globally, naturally occurring in more than 60 plants. Accurate determination of caffeine content is crucial to ensure the safety of consumers of caffeine-containing beverages. This work explores two different electrochemical sensors for caffeine determination: screen-printed carbon electrodes modified with multi-walled carbon nanotubes (MWCNT SPEs) and screen-printed sensors with boron-doped diamond electrodes prepared by chemical vapor deposition (BDD SPEs). These sensors offer advantages over traditional methods, potentially providing faster and more portable analysis. Two linear ranges for caffeine determination were observed at BDD SPEs in 0.5 M H2SO4. A lower linear range between 20 μM and 80 μM resulted in a limit of detection (LOD) of 3.40 μM and a limit of quantification (LOQ) of 10.30 μM, while a higher linear range between 100 μM to 500 μM provided the LOD of 9.72 μM and the LOQ of 29.45 μM of caffeine. MWCNT SPEs showed the optimal analytical parameters in the Britton-Robinson buffer at pH 2 with a broader linear range from 33 μM to 500 μM; the LOD was 8.65 μM, and the LOQ was 26.20 μM. The determination of caffeine content was successfully conducted in real dietary samples using both sensors, with validation by high-performance liquid chromatography (HPLC) and spectrophotometric analysis.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.