世界自然保护联盟威胁的印度红树林协会:一种新的数据驱动的规则过滤方法,用于恢复策略

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY
Moumita Ghosh , Sourav Mondal , Rohmatul Fajriyah , Kartick Chandra Mondal , Anirban Roy
{"title":"世界自然保护联盟威胁的印度红树林协会:一种新的数据驱动的规则过滤方法,用于恢复策略","authors":"Moumita Ghosh ,&nbsp;Sourav Mondal ,&nbsp;Rohmatul Fajriyah ,&nbsp;Kartick Chandra Mondal ,&nbsp;Anirban Roy","doi":"10.1016/j.ecoinf.2025.103164","DOIUrl":null,"url":null,"abstract":"<div><div>Restoring biodiversity is crucial for ecological sustainability. This study introduces a novel data-driven rule-filtering framework that adopts domain knowledge of taxonomic distinctness and proposes a new metric, total taxonomic distinctness, to prioritize species selection for targeted restoration efforts. We extract and validate association rules to identify frequently co-occurring species and rank them based on total taxonomic distinctness. This structured approach ensures the selection of ecologically significant species that enhance biodiversity and ecosystem resilience. We apply this three-stage framework to Indian mangrove ecosystems, focusing on four IUCN Red List species: <em>Heritiera fomes</em>, <em>Sonneratia griffithii</em>, <em>Ceriops decandra</em>, and <em>Phoenix paludosa</em>. Our results indicate that taxonomically distinct species tend to co-occur more frequently, enhancing ecosystem resilience. Statistical validation using multiple hypothesis testing ensures the robustness of our findings. To assess the framework’s broader applicability, we extend our analysis to species presence-absence data from sacred groves in the laterite regions of eastern India. The results reinforce our previous findings, demonstrating frequent association patterns among taxonomically distinct species. This study provides actionable insights for ecological restoration, guiding species selection and co-planting strategies. The framework is adaptable across ecosystems, offering a scalable approach to biodiversity conservation.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"89 ","pages":"Article 103164"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of IUCN-threatened Indian mangroves: A novel data-driven rule filtering approach for restoration strategy\",\"authors\":\"Moumita Ghosh ,&nbsp;Sourav Mondal ,&nbsp;Rohmatul Fajriyah ,&nbsp;Kartick Chandra Mondal ,&nbsp;Anirban Roy\",\"doi\":\"10.1016/j.ecoinf.2025.103164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Restoring biodiversity is crucial for ecological sustainability. This study introduces a novel data-driven rule-filtering framework that adopts domain knowledge of taxonomic distinctness and proposes a new metric, total taxonomic distinctness, to prioritize species selection for targeted restoration efforts. We extract and validate association rules to identify frequently co-occurring species and rank them based on total taxonomic distinctness. This structured approach ensures the selection of ecologically significant species that enhance biodiversity and ecosystem resilience. We apply this three-stage framework to Indian mangrove ecosystems, focusing on four IUCN Red List species: <em>Heritiera fomes</em>, <em>Sonneratia griffithii</em>, <em>Ceriops decandra</em>, and <em>Phoenix paludosa</em>. Our results indicate that taxonomically distinct species tend to co-occur more frequently, enhancing ecosystem resilience. Statistical validation using multiple hypothesis testing ensures the robustness of our findings. To assess the framework’s broader applicability, we extend our analysis to species presence-absence data from sacred groves in the laterite regions of eastern India. The results reinforce our previous findings, demonstrating frequent association patterns among taxonomically distinct species. This study provides actionable insights for ecological restoration, guiding species selection and co-planting strategies. The framework is adaptable across ecosystems, offering a scalable approach to biodiversity conservation.</div></div>\",\"PeriodicalId\":51024,\"journal\":{\"name\":\"Ecological Informatics\",\"volume\":\"89 \",\"pages\":\"Article 103164\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574954125001736\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125001736","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

恢复生物多样性对生态可持续性至关重要。本研究引入了一种新的数据驱动的规则过滤框架,该框架采用了分类独特性的领域知识,并提出了一个新的度量标准——总分类独特性,以优先选择物种进行有针对性的恢复工作。我们提取并验证关联规则来识别频繁共存的物种,并基于总分类独特性对它们进行排序。这种结构化的方法确保了生态重要物种的选择,增强了生物多样性和生态系统的恢复能力。我们将这个三阶段框架应用于印度红树林生态系统,重点关注IUCN红色名录中的四种物种:Heritiera formes, Sonneratia griffithii, Ceriops decandra和Phoenix paludosa。我们的研究结果表明,不同的物种往往更频繁地共存,增强了生态系统的恢复能力。使用多重假设检验的统计验证确保了我们发现的稳健性。为了评估该框架的广泛适用性,我们将分析扩展到印度东部红土地区神圣树林的物种存在缺失数据。结果强化了我们之前的发现,证明了在分类学上不同的物种之间频繁的关联模式。该研究为生态恢复、物种选择和共植策略提供了可操作的见解。该框架适用于各个生态系统,为生物多样性保护提供了一种可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Association of IUCN-threatened Indian mangroves: A novel data-driven rule filtering approach for restoration strategy
Restoring biodiversity is crucial for ecological sustainability. This study introduces a novel data-driven rule-filtering framework that adopts domain knowledge of taxonomic distinctness and proposes a new metric, total taxonomic distinctness, to prioritize species selection for targeted restoration efforts. We extract and validate association rules to identify frequently co-occurring species and rank them based on total taxonomic distinctness. This structured approach ensures the selection of ecologically significant species that enhance biodiversity and ecosystem resilience. We apply this three-stage framework to Indian mangrove ecosystems, focusing on four IUCN Red List species: Heritiera fomes, Sonneratia griffithii, Ceriops decandra, and Phoenix paludosa. Our results indicate that taxonomically distinct species tend to co-occur more frequently, enhancing ecosystem resilience. Statistical validation using multiple hypothesis testing ensures the robustness of our findings. To assess the framework’s broader applicability, we extend our analysis to species presence-absence data from sacred groves in the laterite regions of eastern India. The results reinforce our previous findings, demonstrating frequent association patterns among taxonomically distinct species. This study provides actionable insights for ecological restoration, guiding species selection and co-planting strategies. The framework is adaptable across ecosystems, offering a scalable approach to biodiversity conservation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信