与局域坐标系相关的共轨道空间算子的核定理

IF 1.2 3区 数学 Q1 MATHEMATICS
Dimitri Bytchenkoff , Michael Speckbacher , Peter Balazs
{"title":"与局域坐标系相关的共轨道空间算子的核定理","authors":"Dimitri Bytchenkoff ,&nbsp;Michael Speckbacher ,&nbsp;Peter Balazs","doi":"10.1016/j.jmaa.2025.129678","DOIUrl":null,"url":null,"abstract":"<div><div>Kernel theorems provide a convenient representation of bounded linear operators. For the operator acting on a concrete function space, this means that its action on any element of the space can be expressed as a generalised integral operator, in a way reminiscent of the matrix representation of linear operators acting on finite dimensional vector spaces. We prove kernel theorems for bounded linear operators acting on co-orbit spaces associated with localised frames. Our two main results characterise the spaces of operators whose generalised integral kernels belong to the co-orbit spaces of test functions and distributions associated with the tensor product of the localised frames respectively. Moreover, using a version of Schur's test, we establish a characterisation of the bounded linear operators between some specific co-orbit spaces and kernels in mixed-norm co-orbit spaces.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129678"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel theorems for operators on co-orbit spaces associated with localised frames\",\"authors\":\"Dimitri Bytchenkoff ,&nbsp;Michael Speckbacher ,&nbsp;Peter Balazs\",\"doi\":\"10.1016/j.jmaa.2025.129678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Kernel theorems provide a convenient representation of bounded linear operators. For the operator acting on a concrete function space, this means that its action on any element of the space can be expressed as a generalised integral operator, in a way reminiscent of the matrix representation of linear operators acting on finite dimensional vector spaces. We prove kernel theorems for bounded linear operators acting on co-orbit spaces associated with localised frames. Our two main results characterise the spaces of operators whose generalised integral kernels belong to the co-orbit spaces of test functions and distributions associated with the tensor product of the localised frames respectively. Moreover, using a version of Schur's test, we establish a characterisation of the bounded linear operators between some specific co-orbit spaces and kernels in mixed-norm co-orbit spaces.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129678\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004597\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004597","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

核定理提供了有界线性算子的方便表示。对于作用于具体函数空间的算子,这意味着它作用于空间的任何元素都可以表示为广义积分算子,以一种让人想起作用于有限维向量空间的线性算子的矩阵表示的方式。我们证明了作用于与局域坐标系相关的共轨道空间上的有界线性算子的核定理。我们的两个主要结果分别表征了广义积分核属于测试函数的共轨道空间和与局域坐标系张量积相关的分布的算子空间。此外,利用Schur检验的一个版本,我们建立了混合范数共轨空间中某些特定共轨空间与核之间的有界线性算子的刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel theorems for operators on co-orbit spaces associated with localised frames
Kernel theorems provide a convenient representation of bounded linear operators. For the operator acting on a concrete function space, this means that its action on any element of the space can be expressed as a generalised integral operator, in a way reminiscent of the matrix representation of linear operators acting on finite dimensional vector spaces. We prove kernel theorems for bounded linear operators acting on co-orbit spaces associated with localised frames. Our two main results characterise the spaces of operators whose generalised integral kernels belong to the co-orbit spaces of test functions and distributions associated with the tensor product of the localised frames respectively. Moreover, using a version of Schur's test, we establish a characterisation of the bounded linear operators between some specific co-orbit spaces and kernels in mixed-norm co-orbit spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信