Dimitri Bytchenkoff , Michael Speckbacher , Peter Balazs
{"title":"与局域坐标系相关的共轨道空间算子的核定理","authors":"Dimitri Bytchenkoff , Michael Speckbacher , Peter Balazs","doi":"10.1016/j.jmaa.2025.129678","DOIUrl":null,"url":null,"abstract":"<div><div>Kernel theorems provide a convenient representation of bounded linear operators. For the operator acting on a concrete function space, this means that its action on any element of the space can be expressed as a generalised integral operator, in a way reminiscent of the matrix representation of linear operators acting on finite dimensional vector spaces. We prove kernel theorems for bounded linear operators acting on co-orbit spaces associated with localised frames. Our two main results characterise the spaces of operators whose generalised integral kernels belong to the co-orbit spaces of test functions and distributions associated with the tensor product of the localised frames respectively. Moreover, using a version of Schur's test, we establish a characterisation of the bounded linear operators between some specific co-orbit spaces and kernels in mixed-norm co-orbit spaces.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129678"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel theorems for operators on co-orbit spaces associated with localised frames\",\"authors\":\"Dimitri Bytchenkoff , Michael Speckbacher , Peter Balazs\",\"doi\":\"10.1016/j.jmaa.2025.129678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Kernel theorems provide a convenient representation of bounded linear operators. For the operator acting on a concrete function space, this means that its action on any element of the space can be expressed as a generalised integral operator, in a way reminiscent of the matrix representation of linear operators acting on finite dimensional vector spaces. We prove kernel theorems for bounded linear operators acting on co-orbit spaces associated with localised frames. Our two main results characterise the spaces of operators whose generalised integral kernels belong to the co-orbit spaces of test functions and distributions associated with the tensor product of the localised frames respectively. Moreover, using a version of Schur's test, we establish a characterisation of the bounded linear operators between some specific co-orbit spaces and kernels in mixed-norm co-orbit spaces.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129678\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004597\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004597","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Kernel theorems for operators on co-orbit spaces associated with localised frames
Kernel theorems provide a convenient representation of bounded linear operators. For the operator acting on a concrete function space, this means that its action on any element of the space can be expressed as a generalised integral operator, in a way reminiscent of the matrix representation of linear operators acting on finite dimensional vector spaces. We prove kernel theorems for bounded linear operators acting on co-orbit spaces associated with localised frames. Our two main results characterise the spaces of operators whose generalised integral kernels belong to the co-orbit spaces of test functions and distributions associated with the tensor product of the localised frames respectively. Moreover, using a version of Schur's test, we establish a characterisation of the bounded linear operators between some specific co-orbit spaces and kernels in mixed-norm co-orbit spaces.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.