{"title":"加权Bergman和Hardy空间上的Hausdorff算子","authors":"Ha Duy Hung , Luong Dang Ky","doi":"10.1016/j.jmaa.2025.129661","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>, <span><math><mi>α</mi><mo>></mo><mo>−</mo><mn>1</mn></math></span>, and let <em>φ</em> be a measurable function on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. The main purpose of this paper is to study the Hausdorff operator<span><span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>φ</mi></mrow></msub><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∫</mo><mrow><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mi>f</mi><mrow><mo>(</mo><mfrac><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>)</mo></mrow><mfrac><mrow><mi>φ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>t</mi></mrow></mfrac><mi>d</mi><mi>t</mi><mo>,</mo><mspace></mspace><mi>z</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></math></span></span></span> on the weighted Bergman space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span> and on the power weighted Hardy space <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span> of the upper half-plane. Some applications to the real version of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> are also given.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129661"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hausdorff operators on weighted Bergman and Hardy spaces\",\"authors\":\"Ha Duy Hung , Luong Dang Ky\",\"doi\":\"10.1016/j.jmaa.2025.129661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span>, <span><math><mi>α</mi><mo>></mo><mo>−</mo><mn>1</mn></math></span>, and let <em>φ</em> be a measurable function on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. The main purpose of this paper is to study the Hausdorff operator<span><span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>φ</mi></mrow></msub><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∫</mo><mrow><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><mi>f</mi><mrow><mo>(</mo><mfrac><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>)</mo></mrow><mfrac><mrow><mi>φ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>t</mi></mrow></mfrac><mi>d</mi><mi>t</mi><mo>,</mo><mspace></mspace><mi>z</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></math></span></span></span> on the weighted Bergman space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span> and on the power weighted Hardy space <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mo>|</mo><mo>⋅</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span> of the upper half-plane. Some applications to the real version of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>φ</mi></mrow></msub></math></span> are also given.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129661\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004421\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004421","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hausdorff operators on weighted Bergman and Hardy spaces
Let , , and let φ be a measurable function on . The main purpose of this paper is to study the Hausdorff operator on the weighted Bergman space and on the power weighted Hardy space of the upper half-plane. Some applications to the real version of are also given.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.