Fabio Carrara, Lucia Vadicamo, Giuseppe Amato, Claudio Gennaro
{"title":"面向可扩展信息检索的密集向量的无训练稀疏表示","authors":"Fabio Carrara, Lucia Vadicamo, Giuseppe Amato, Claudio Gennaro","doi":"10.1016/j.is.2025.102567","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose and analyze Vec2Doc, a novel training-free method to transform dense vectors into sparse integer vectors, facilitating the use of inverted indexes for information retrieval (IR). The exponential growth of deep learning and artificial intelligence has revolutionized scientific problem-solving in areas such as computer vision, natural language processing, and automatic content generation. These advances have also significantly impacted IR, with a better understanding of natural language and multimodal content analysis leading to more accurate information retrieval. Despite these developments, modern IR relies primarily on the similarity evaluation of dense vectors from the latent spaces of deep neural networks. This dependence introduces substantial challenges in performing similarity searches on large collections containing billions of vectors. Traditional IR methods, which employ inverted indexes and vector space models, are adept at handling sparse vectors but do not work well with dense ones. Vec2Doc attempts to fill this gap by converting dense vectors into a format compatible with conventional inverted index techniques. Our preliminary experimental evaluations show that Vec2Doc is a promising solution to overcome the scalability problems inherent in vector-based IR, offering an alternative method for efficient and accurate large-scale information retrieval.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"133 ","pages":"Article 102567"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training-free sparse representations of dense vectors for scalable information retrieval\",\"authors\":\"Fabio Carrara, Lucia Vadicamo, Giuseppe Amato, Claudio Gennaro\",\"doi\":\"10.1016/j.is.2025.102567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose and analyze Vec2Doc, a novel training-free method to transform dense vectors into sparse integer vectors, facilitating the use of inverted indexes for information retrieval (IR). The exponential growth of deep learning and artificial intelligence has revolutionized scientific problem-solving in areas such as computer vision, natural language processing, and automatic content generation. These advances have also significantly impacted IR, with a better understanding of natural language and multimodal content analysis leading to more accurate information retrieval. Despite these developments, modern IR relies primarily on the similarity evaluation of dense vectors from the latent spaces of deep neural networks. This dependence introduces substantial challenges in performing similarity searches on large collections containing billions of vectors. Traditional IR methods, which employ inverted indexes and vector space models, are adept at handling sparse vectors but do not work well with dense ones. Vec2Doc attempts to fill this gap by converting dense vectors into a format compatible with conventional inverted index techniques. Our preliminary experimental evaluations show that Vec2Doc is a promising solution to overcome the scalability problems inherent in vector-based IR, offering an alternative method for efficient and accurate large-scale information retrieval.</div></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"133 \",\"pages\":\"Article 102567\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437925000511\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437925000511","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Training-free sparse representations of dense vectors for scalable information retrieval
In this paper, we propose and analyze Vec2Doc, a novel training-free method to transform dense vectors into sparse integer vectors, facilitating the use of inverted indexes for information retrieval (IR). The exponential growth of deep learning and artificial intelligence has revolutionized scientific problem-solving in areas such as computer vision, natural language processing, and automatic content generation. These advances have also significantly impacted IR, with a better understanding of natural language and multimodal content analysis leading to more accurate information retrieval. Despite these developments, modern IR relies primarily on the similarity evaluation of dense vectors from the latent spaces of deep neural networks. This dependence introduces substantial challenges in performing similarity searches on large collections containing billions of vectors. Traditional IR methods, which employ inverted indexes and vector space models, are adept at handling sparse vectors but do not work well with dense ones. Vec2Doc attempts to fill this gap by converting dense vectors into a format compatible with conventional inverted index techniques. Our preliminary experimental evaluations show that Vec2Doc is a promising solution to overcome the scalability problems inherent in vector-based IR, offering an alternative method for efficient and accurate large-scale information retrieval.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.