{"title":"人造肉基因组尺度代谢模型:进展、挑战和未来方向","authors":"Sandra Gomez Romero , Isabella Spielmann , Nanette Boyle","doi":"10.1016/j.copbio.2025.103313","DOIUrl":null,"url":null,"abstract":"<div><div>Cultivated meat is an emerging field that integrates stem cell biology, tissue engineering, and bioprocessing to create a sustainable alternative to conventional meat. However, its widespread adoption faces key metabolic challenges, including the need for serum-free media, optimization of cell line–specific growth conditions, and enhanced cellular engineering strategies. <em>GE</em>nome-scale <em>M</em>etabolic models (GEMs) have been instrumental in optimizing metabolic conditions for Chinese hamster ovaries, a powerhouse species for biomanufacturing, and they can be adapted to be used for cultivated meat in the same way. These models facilitate the transition to cost-effective, serum-free media and improve biomass production through metabolic flux analysis. Future advancements will require expanding publicly available metabolic data sets, refining cell line–specific models, and integrating transcriptomic and proteomic data to enhance predictive accuracy. By leveraging GEMs, cultivated meat production can overcome current limitations, paving the way for a scalable, sustainable, and economically viable alternative to traditional meat.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"94 ","pages":"Article 103313"},"PeriodicalIF":7.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-scale metabolic models in cultivated meat: advances, challenges, and future directions\",\"authors\":\"Sandra Gomez Romero , Isabella Spielmann , Nanette Boyle\",\"doi\":\"10.1016/j.copbio.2025.103313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cultivated meat is an emerging field that integrates stem cell biology, tissue engineering, and bioprocessing to create a sustainable alternative to conventional meat. However, its widespread adoption faces key metabolic challenges, including the need for serum-free media, optimization of cell line–specific growth conditions, and enhanced cellular engineering strategies. <em>GE</em>nome-scale <em>M</em>etabolic models (GEMs) have been instrumental in optimizing metabolic conditions for Chinese hamster ovaries, a powerhouse species for biomanufacturing, and they can be adapted to be used for cultivated meat in the same way. These models facilitate the transition to cost-effective, serum-free media and improve biomass production through metabolic flux analysis. Future advancements will require expanding publicly available metabolic data sets, refining cell line–specific models, and integrating transcriptomic and proteomic data to enhance predictive accuracy. By leveraging GEMs, cultivated meat production can overcome current limitations, paving the way for a scalable, sustainable, and economically viable alternative to traditional meat.</div></div>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":\"94 \",\"pages\":\"Article 103313\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958166925000576\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166925000576","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Genome-scale metabolic models in cultivated meat: advances, challenges, and future directions
Cultivated meat is an emerging field that integrates stem cell biology, tissue engineering, and bioprocessing to create a sustainable alternative to conventional meat. However, its widespread adoption faces key metabolic challenges, including the need for serum-free media, optimization of cell line–specific growth conditions, and enhanced cellular engineering strategies. GEnome-scale Metabolic models (GEMs) have been instrumental in optimizing metabolic conditions for Chinese hamster ovaries, a powerhouse species for biomanufacturing, and they can be adapted to be used for cultivated meat in the same way. These models facilitate the transition to cost-effective, serum-free media and improve biomass production through metabolic flux analysis. Future advancements will require expanding publicly available metabolic data sets, refining cell line–specific models, and integrating transcriptomic and proteomic data to enhance predictive accuracy. By leveraging GEMs, cultivated meat production can overcome current limitations, paving the way for a scalable, sustainable, and economically viable alternative to traditional meat.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.