Fei Han , Zhiwei Zhou , Chaoran Liu , Zedong Lu , Liping Tian , Xing Li
{"title":"生物活性炭过滤器中动态微生物群落组装和分子生态网络响应:藻类有机物暴露和空床接触时间的影响","authors":"Fei Han , Zhiwei Zhou , Chaoran Liu , Zedong Lu , Liping Tian , Xing Li","doi":"10.1016/j.envres.2025.121833","DOIUrl":null,"url":null,"abstract":"<div><div>Biological activated carbon (BAC) filtration plays a crucial role in advanced drinking water treatment. Recent researches have shifted from decontamination performance evaluation to process optimization and customization of microbial communities. The responses of microbial communities to seasonal water quality variations caused by algal outbreaks or deaths, and operational conditions of filtration medium and empty bed contact time (EBCT), along with dynamics of assembly processes and molecular ecological networks remain insufficiently understood. Herein, the decontamination performance of four BAC columns packed with varied physicochemical properties of granular activated carbon (GAC), exposed to algal organic matter (AOM) and changes of EBCT was investigated. Microbial diversity, assembly mechanisms, and dynamics of molecular ecological networks were systematically evaluated. Results showed that coal-based BAC exhibited superior decontamination performance under AOM exposure, with average removals of COD<sub>Mn</sub> (47.23 %), UV<sub>254</sub> (55.82 %), and NH<sub>4</sub><sup>+</sup>-N (65.01 %), along with higher microbial diversity and richness than that of wood-based BAC. AOM exposure increased microbial diversity, while shortened EBCT reduced it. Deterministic processes in community assembly intensified under both AOM exposure and a shortened EBCT of 10 min, the proportion were up to 82 % and 75 %, respectively. AOM exposure increased network scale and complexity, whereas the opposite trend was observed with a shortened EBCT of 10min. Structural equation modeling identified that influent water quality (path coefficient = 1.00) was the dominant driver of microbial diversity, followed by GAC properties (0.30) and EBCT (−0.35). These findings provide insights for microbial community customization and BAC process optimization to control algal-derived organic contamination.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"279 ","pages":"Article 121833"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic microbial community assembly and molecular ecological network responses in biological activated carbon filters: effects of algal organic matter exposure and empty bed contact time\",\"authors\":\"Fei Han , Zhiwei Zhou , Chaoran Liu , Zedong Lu , Liping Tian , Xing Li\",\"doi\":\"10.1016/j.envres.2025.121833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biological activated carbon (BAC) filtration plays a crucial role in advanced drinking water treatment. Recent researches have shifted from decontamination performance evaluation to process optimization and customization of microbial communities. The responses of microbial communities to seasonal water quality variations caused by algal outbreaks or deaths, and operational conditions of filtration medium and empty bed contact time (EBCT), along with dynamics of assembly processes and molecular ecological networks remain insufficiently understood. Herein, the decontamination performance of four BAC columns packed with varied physicochemical properties of granular activated carbon (GAC), exposed to algal organic matter (AOM) and changes of EBCT was investigated. Microbial diversity, assembly mechanisms, and dynamics of molecular ecological networks were systematically evaluated. Results showed that coal-based BAC exhibited superior decontamination performance under AOM exposure, with average removals of COD<sub>Mn</sub> (47.23 %), UV<sub>254</sub> (55.82 %), and NH<sub>4</sub><sup>+</sup>-N (65.01 %), along with higher microbial diversity and richness than that of wood-based BAC. AOM exposure increased microbial diversity, while shortened EBCT reduced it. Deterministic processes in community assembly intensified under both AOM exposure and a shortened EBCT of 10 min, the proportion were up to 82 % and 75 %, respectively. AOM exposure increased network scale and complexity, whereas the opposite trend was observed with a shortened EBCT of 10min. Structural equation modeling identified that influent water quality (path coefficient = 1.00) was the dominant driver of microbial diversity, followed by GAC properties (0.30) and EBCT (−0.35). These findings provide insights for microbial community customization and BAC process optimization to control algal-derived organic contamination.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"279 \",\"pages\":\"Article 121833\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935125010849\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125010849","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Dynamic microbial community assembly and molecular ecological network responses in biological activated carbon filters: effects of algal organic matter exposure and empty bed contact time
Biological activated carbon (BAC) filtration plays a crucial role in advanced drinking water treatment. Recent researches have shifted from decontamination performance evaluation to process optimization and customization of microbial communities. The responses of microbial communities to seasonal water quality variations caused by algal outbreaks or deaths, and operational conditions of filtration medium and empty bed contact time (EBCT), along with dynamics of assembly processes and molecular ecological networks remain insufficiently understood. Herein, the decontamination performance of four BAC columns packed with varied physicochemical properties of granular activated carbon (GAC), exposed to algal organic matter (AOM) and changes of EBCT was investigated. Microbial diversity, assembly mechanisms, and dynamics of molecular ecological networks were systematically evaluated. Results showed that coal-based BAC exhibited superior decontamination performance under AOM exposure, with average removals of CODMn (47.23 %), UV254 (55.82 %), and NH4+-N (65.01 %), along with higher microbial diversity and richness than that of wood-based BAC. AOM exposure increased microbial diversity, while shortened EBCT reduced it. Deterministic processes in community assembly intensified under both AOM exposure and a shortened EBCT of 10 min, the proportion were up to 82 % and 75 %, respectively. AOM exposure increased network scale and complexity, whereas the opposite trend was observed with a shortened EBCT of 10min. Structural equation modeling identified that influent water quality (path coefficient = 1.00) was the dominant driver of microbial diversity, followed by GAC properties (0.30) and EBCT (−0.35). These findings provide insights for microbial community customization and BAC process optimization to control algal-derived organic contamination.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.