指数虫洞及其拟正态,以及对数f(R)重力下的研究

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Partha Pratim Nath, Debojit Sarma
{"title":"指数虫洞及其拟正态,以及对数f(R)重力下的研究","authors":"Partha Pratim Nath,&nbsp;Debojit Sarma","doi":"10.1016/j.aop.2025.170067","DOIUrl":null,"url":null,"abstract":"<div><div>We have investigated the quasinormal modes of “exponential wormhole” using 3rd-order WKB approximation. Following that, we have explored the metric in the logarithmic <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity using a cubic gravity term inside the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> function. We determined the parameters for the logarithmic <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity model, which include energy density, tangential, and radial pressure. Afterward, we explored the energy conditions for the proposed model through related plots. We have used trivial techniques to constrain the free parameters of the logarithmic <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity. We showed the appropriate stability criteria using related graphs. Also, we discovered that the exponential wormhole satisfies some of the required energy barriers in the Logarithmic <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity without disturbing any flare-out or stability constraints. We additionally studied the stability of the exponential wormhole in the logarithmic <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity through the Tolman–Oppenheimer–Volkoff(TOV) equation and found some interesting nature of the space–time. The logarithmic f(R) gravity model is convenient for the exponential wormhole’s existence, even if there are certain limitations on the parameter ranges of the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity model.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"479 ","pages":"Article 170067"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential wormhole, its quasinormal modes, and study in logarithmic f(R) gravity\",\"authors\":\"Partha Pratim Nath,&nbsp;Debojit Sarma\",\"doi\":\"10.1016/j.aop.2025.170067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We have investigated the quasinormal modes of “exponential wormhole” using 3rd-order WKB approximation. Following that, we have explored the metric in the logarithmic <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity using a cubic gravity term inside the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> function. We determined the parameters for the logarithmic <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity model, which include energy density, tangential, and radial pressure. Afterward, we explored the energy conditions for the proposed model through related plots. We have used trivial techniques to constrain the free parameters of the logarithmic <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity. We showed the appropriate stability criteria using related graphs. Also, we discovered that the exponential wormhole satisfies some of the required energy barriers in the Logarithmic <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity without disturbing any flare-out or stability constraints. We additionally studied the stability of the exponential wormhole in the logarithmic <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity through the Tolman–Oppenheimer–Volkoff(TOV) equation and found some interesting nature of the space–time. The logarithmic f(R) gravity model is convenient for the exponential wormhole’s existence, even if there are certain limitations on the parameter ranges of the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity model.</div></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"479 \",\"pages\":\"Article 170067\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491625001484\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625001484","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用三阶WKB近似研究了“指数虫洞”的拟正规模态。接下来,我们利用f(R)函数内的三次重力项探索了对数f(R)重力中的度规。我们确定了对数f(R)重力模型的参数,包括能量密度、切向压力和径向压力。随后,我们通过相关的图探索了所提出模型的能量条件。我们已经使用了一些简单的技术来约束对数f(R)重力的自由参数。我们用相关的图展示了相应的稳定性准则。此外,我们发现指数虫洞满足对数f(R)重力中一些所需的能量势垒,而不会干扰任何耀斑或稳定性约束。此外,我们还通过Tolman-Oppenheimer-Volkoff (TOV)方程研究了对数f(R)重力下指数虫洞的稳定性,并发现了一些有趣的时空性质。对数f(R)引力模型便于指数虫洞的存在,但f(R)引力模型的参数范围有一定的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential wormhole, its quasinormal modes, and study in logarithmic f(R) gravity
We have investigated the quasinormal modes of “exponential wormhole” using 3rd-order WKB approximation. Following that, we have explored the metric in the logarithmic f(R) gravity using a cubic gravity term inside the f(R) function. We determined the parameters for the logarithmic f(R) gravity model, which include energy density, tangential, and radial pressure. Afterward, we explored the energy conditions for the proposed model through related plots. We have used trivial techniques to constrain the free parameters of the logarithmic f(R) gravity. We showed the appropriate stability criteria using related graphs. Also, we discovered that the exponential wormhole satisfies some of the required energy barriers in the Logarithmic f(R) gravity without disturbing any flare-out or stability constraints. We additionally studied the stability of the exponential wormhole in the logarithmic f(R) gravity through the Tolman–Oppenheimer–Volkoff(TOV) equation and found some interesting nature of the space–time. The logarithmic f(R) gravity model is convenient for the exponential wormhole’s existence, even if there are certain limitations on the parameter ranges of the f(R) gravity model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信