Emad Al-Shafei , Mohammed Albahar , Reem Albashrayi , Mohammad F. Aljishi , Wala Algozeeb , Ahmed Alasseel , Gazali Tanimu , Abdullah Aitani
{"title":"乙烷在钛基催化剂上的干法重整以获得更高的选择性和转化为合成气","authors":"Emad Al-Shafei , Mohammed Albahar , Reem Albashrayi , Mohammad F. Aljishi , Wala Algozeeb , Ahmed Alasseel , Gazali Tanimu , Abdullah Aitani","doi":"10.1016/j.crcon.2024.100249","DOIUrl":null,"url":null,"abstract":"<div><div>Ethane, one of the key components of shale gas, is a valuable feedstock for the production of syngas (CO + H<sub>2</sub>) via the C<img>C bond cleavage during dry reforming of ethane (DRE) reaction. Selective catalysts are needed to direct this reaction pathway against the competing C<img>H bond cleavage for ethylene formation. In this study, Fe, V and Rh oxides supported on TiO<sub>2</sub> catalysts were prepared by impregnation method. The catalysts were tested for DRE with the main target of enhancing selectivity to syngas (CO and H<sub>2</sub>) and reducing byproducts (methane and ethylene) formation. The catalysts were characterized using X-ray diffraction, scanning electron microscopy, NH<sub>3</sub>/CO<sub>2</sub> temperature programmed desorption and H<sub>2</sub>-temperature programmed reduction. Temperature programmed oxidation was utilized to characterize the coke contents of the spent catalysts. The catalysts were evaluated for DRE reaction in a fixed-bed reactor at the temperature range from 500 °C to 650 °C and CO<sub>2</sub>/ethane ratio from 2:1 to 10:1 (mol/mol). It was found that ethane conversion over the three catalysts increased in the order Rh/TiO<sub>2</sub> > Fe/TiO<sub>2</sub> > V/TiO<sub>2</sub>. Rh/TiO<sub>2</sub> catalyst exhibited > 99 % ethane conversion, 36 % and 61 % yields of H<sub>2</sub> and CO, respectively, at 650 °C and CO<sub>2</sub>/ethane ratio of 5.0. The high conversion of ethane was mainly attributed to the enhanced dispersion of Rh oxides on the TiO<sub>2</sub> support coupled with the balanced surface acidic and basic sites. The Rh catalyst facilitated C<img>C bond dissociation of ethane thereby forming methyl intermediates which then reacted with adsorbed CO<sub>2</sub>, thereby enhancing higher syngas production during DRE reaction.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 2","pages":"Article 100249"},"PeriodicalIF":7.5000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dry reforming of ethane over titania-based catalysts for higher selectivity and conversion to syngas\",\"authors\":\"Emad Al-Shafei , Mohammed Albahar , Reem Albashrayi , Mohammad F. Aljishi , Wala Algozeeb , Ahmed Alasseel , Gazali Tanimu , Abdullah Aitani\",\"doi\":\"10.1016/j.crcon.2024.100249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ethane, one of the key components of shale gas, is a valuable feedstock for the production of syngas (CO + H<sub>2</sub>) via the C<img>C bond cleavage during dry reforming of ethane (DRE) reaction. Selective catalysts are needed to direct this reaction pathway against the competing C<img>H bond cleavage for ethylene formation. In this study, Fe, V and Rh oxides supported on TiO<sub>2</sub> catalysts were prepared by impregnation method. The catalysts were tested for DRE with the main target of enhancing selectivity to syngas (CO and H<sub>2</sub>) and reducing byproducts (methane and ethylene) formation. The catalysts were characterized using X-ray diffraction, scanning electron microscopy, NH<sub>3</sub>/CO<sub>2</sub> temperature programmed desorption and H<sub>2</sub>-temperature programmed reduction. Temperature programmed oxidation was utilized to characterize the coke contents of the spent catalysts. The catalysts were evaluated for DRE reaction in a fixed-bed reactor at the temperature range from 500 °C to 650 °C and CO<sub>2</sub>/ethane ratio from 2:1 to 10:1 (mol/mol). It was found that ethane conversion over the three catalysts increased in the order Rh/TiO<sub>2</sub> > Fe/TiO<sub>2</sub> > V/TiO<sub>2</sub>. Rh/TiO<sub>2</sub> catalyst exhibited > 99 % ethane conversion, 36 % and 61 % yields of H<sub>2</sub> and CO, respectively, at 650 °C and CO<sub>2</sub>/ethane ratio of 5.0. The high conversion of ethane was mainly attributed to the enhanced dispersion of Rh oxides on the TiO<sub>2</sub> support coupled with the balanced surface acidic and basic sites. The Rh catalyst facilitated C<img>C bond dissociation of ethane thereby forming methyl intermediates which then reacted with adsorbed CO<sub>2</sub>, thereby enhancing higher syngas production during DRE reaction.</div></div>\",\"PeriodicalId\":52958,\"journal\":{\"name\":\"Carbon Resources Conversion\",\"volume\":\"8 2\",\"pages\":\"Article 100249\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Resources Conversion\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588913324000383\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913324000383","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Dry reforming of ethane over titania-based catalysts for higher selectivity and conversion to syngas
Ethane, one of the key components of shale gas, is a valuable feedstock for the production of syngas (CO + H2) via the CC bond cleavage during dry reforming of ethane (DRE) reaction. Selective catalysts are needed to direct this reaction pathway against the competing CH bond cleavage for ethylene formation. In this study, Fe, V and Rh oxides supported on TiO2 catalysts were prepared by impregnation method. The catalysts were tested for DRE with the main target of enhancing selectivity to syngas (CO and H2) and reducing byproducts (methane and ethylene) formation. The catalysts were characterized using X-ray diffraction, scanning electron microscopy, NH3/CO2 temperature programmed desorption and H2-temperature programmed reduction. Temperature programmed oxidation was utilized to characterize the coke contents of the spent catalysts. The catalysts were evaluated for DRE reaction in a fixed-bed reactor at the temperature range from 500 °C to 650 °C and CO2/ethane ratio from 2:1 to 10:1 (mol/mol). It was found that ethane conversion over the three catalysts increased in the order Rh/TiO2 > Fe/TiO2 > V/TiO2. Rh/TiO2 catalyst exhibited > 99 % ethane conversion, 36 % and 61 % yields of H2 and CO, respectively, at 650 °C and CO2/ethane ratio of 5.0. The high conversion of ethane was mainly attributed to the enhanced dispersion of Rh oxides on the TiO2 support coupled with the balanced surface acidic and basic sites. The Rh catalyst facilitated CC bond dissociation of ethane thereby forming methyl intermediates which then reacted with adsorbed CO2, thereby enhancing higher syngas production during DRE reaction.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.