{"title":"周期Dirac-Fock泛函与极小化器的性质","authors":"Isabelle Catto , Long Meng","doi":"10.1016/j.matpur.2025.103719","DOIUrl":null,"url":null,"abstract":"<div><div>Existence of minimizers for the Dirac–Fock model for crystals was recently proved by Paturel and Séré and the authors <span><span>[9]</span></span>. In this paper, inspired by Ghimenti and Lewin's result <span><span>[13]</span></span> for the periodic Hartree–Fock model, we prove that the Fermi level of any periodic Dirac–Fock minimizer is either empty or totally filled when <span><math><mfrac><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> and <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span>. Here <em>c</em> is the speed of light, <em>α</em> is the fine structure constant, and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> is a constant only depending on the number of electrons and on the charge of nuclei per cell. More importantly, we provide an explicit upper bound for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span>.</div><div>Our result implies that any minimizer of the periodic Dirac–Fock model is a projector when <span><math><mfrac><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> and <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span>. In particular, the non-relativistic regime (i.e., <span><math><mi>c</mi><mo>≫</mo><mn>1</mn></math></span>) and the weak coupling regime (i.e., <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo>≪</mo><mn>1</mn></math></span>) are covered.</div><div>The proof is based on a delicate study of a second-order expansion of the periodic Dirac–Fock functional composed with a retraction that was introduced by Séré in <span><span>[24]</span></span> for atoms and molecules and later extended to the case of crystals in <span><span>[9]</span></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"201 ","pages":"Article 103719"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of periodic Dirac–Fock functional and minimizers\",\"authors\":\"Isabelle Catto , Long Meng\",\"doi\":\"10.1016/j.matpur.2025.103719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Existence of minimizers for the Dirac–Fock model for crystals was recently proved by Paturel and Séré and the authors <span><span>[9]</span></span>. In this paper, inspired by Ghimenti and Lewin's result <span><span>[13]</span></span> for the periodic Hartree–Fock model, we prove that the Fermi level of any periodic Dirac–Fock minimizer is either empty or totally filled when <span><math><mfrac><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> and <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span>. Here <em>c</em> is the speed of light, <em>α</em> is the fine structure constant, and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> is a constant only depending on the number of electrons and on the charge of nuclei per cell. More importantly, we provide an explicit upper bound for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span>.</div><div>Our result implies that any minimizer of the periodic Dirac–Fock model is a projector when <span><math><mfrac><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> and <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span>. In particular, the non-relativistic regime (i.e., <span><math><mi>c</mi><mo>≫</mo><mn>1</mn></math></span>) and the weak coupling regime (i.e., <span><math><mn>0</mn><mo><</mo><mi>α</mi><mo>≪</mo><mn>1</mn></math></span>) are covered.</div><div>The proof is based on a delicate study of a second-order expansion of the periodic Dirac–Fock functional composed with a retraction that was introduced by Séré in <span><span>[24]</span></span> for atoms and molecules and later extended to the case of crystals in <span><span>[9]</span></span>.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"201 \",\"pages\":\"Article 103719\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425000637\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000637","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Properties of periodic Dirac–Fock functional and minimizers
Existence of minimizers for the Dirac–Fock model for crystals was recently proved by Paturel and Séré and the authors [9]. In this paper, inspired by Ghimenti and Lewin's result [13] for the periodic Hartree–Fock model, we prove that the Fermi level of any periodic Dirac–Fock minimizer is either empty or totally filled when and . Here c is the speed of light, α is the fine structure constant, and is a constant only depending on the number of electrons and on the charge of nuclei per cell. More importantly, we provide an explicit upper bound for .
Our result implies that any minimizer of the periodic Dirac–Fock model is a projector when and . In particular, the non-relativistic regime (i.e., ) and the weak coupling regime (i.e., ) are covered.
The proof is based on a delicate study of a second-order expansion of the periodic Dirac–Fock functional composed with a retraction that was introduced by Séré in [24] for atoms and molecules and later extended to the case of crystals in [9].
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.