周期Dirac-Fock泛函与极小化器的性质

IF 2.1 1区 数学 Q1 MATHEMATICS
Isabelle Catto , Long Meng
{"title":"周期Dirac-Fock泛函与极小化器的性质","authors":"Isabelle Catto ,&nbsp;Long Meng","doi":"10.1016/j.matpur.2025.103719","DOIUrl":null,"url":null,"abstract":"<div><div>Existence of minimizers for the Dirac–Fock model for crystals was recently proved by Paturel and Séré and the authors <span><span>[9]</span></span>. In this paper, inspired by Ghimenti and Lewin's result <span><span>[13]</span></span> for the periodic Hartree–Fock model, we prove that the Fermi level of any periodic Dirac–Fock minimizer is either empty or totally filled when <span><math><mfrac><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> and <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span>. Here <em>c</em> is the speed of light, <em>α</em> is the fine structure constant, and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> is a constant only depending on the number of electrons and on the charge of nuclei per cell. More importantly, we provide an explicit upper bound for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span>.</div><div>Our result implies that any minimizer of the periodic Dirac–Fock model is a projector when <span><math><mfrac><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> and <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span>. In particular, the non-relativistic regime (i.e., <span><math><mi>c</mi><mo>≫</mo><mn>1</mn></math></span>) and the weak coupling regime (i.e., <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>≪</mo><mn>1</mn></math></span>) are covered.</div><div>The proof is based on a delicate study of a second-order expansion of the periodic Dirac–Fock functional composed with a retraction that was introduced by Séré in <span><span>[24]</span></span> for atoms and molecules and later extended to the case of crystals in <span><span>[9]</span></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"201 ","pages":"Article 103719"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of periodic Dirac–Fock functional and minimizers\",\"authors\":\"Isabelle Catto ,&nbsp;Long Meng\",\"doi\":\"10.1016/j.matpur.2025.103719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Existence of minimizers for the Dirac–Fock model for crystals was recently proved by Paturel and Séré and the authors <span><span>[9]</span></span>. In this paper, inspired by Ghimenti and Lewin's result <span><span>[13]</span></span> for the periodic Hartree–Fock model, we prove that the Fermi level of any periodic Dirac–Fock minimizer is either empty or totally filled when <span><math><mfrac><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> and <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span>. Here <em>c</em> is the speed of light, <em>α</em> is the fine structure constant, and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> is a constant only depending on the number of electrons and on the charge of nuclei per cell. More importantly, we provide an explicit upper bound for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span>.</div><div>Our result implies that any minimizer of the periodic Dirac–Fock model is a projector when <span><math><mfrac><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></mfrac><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>cri</mi></mrow></msub></math></span> and <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span>. In particular, the non-relativistic regime (i.e., <span><math><mi>c</mi><mo>≫</mo><mn>1</mn></math></span>) and the weak coupling regime (i.e., <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>≪</mo><mn>1</mn></math></span>) are covered.</div><div>The proof is based on a delicate study of a second-order expansion of the periodic Dirac–Fock functional composed with a retraction that was introduced by Séré in <span><span>[24]</span></span> for atoms and molecules and later extended to the case of crystals in <span><span>[9]</span></span>.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"201 \",\"pages\":\"Article 103719\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425000637\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000637","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,Paturel和ssamur及其作者证明了晶体Dirac-Fock模型的极小值的存在性。本文受Ghimenti和Lewin关于周期hartri - fock模型的结果[13]的启发,证明了当αc≤Ccri和α>;0时,任何周期Dirac-Fock最小器的费米能级要么是空的,要么是完全填充的。这里c是光速,α是精细结构常数,Ccri是一个常数,它只取决于每个细胞的电子数和细胞核的电荷。更重要的是,我们给出了Ccri的显式上界。我们的结果表明,当αc≤Ccri且α>;0时,周期Dirac-Fock模型的任何最小值都是投影。特别地,非相对论性区(即c≠1)和弱耦合区(即0<;α≪1)被涵盖。这一证明是基于对周期性Dirac-Fock泛函的二阶展开的精细研究,该泛函由s在[9]中引入,用于原子和分子,后来扩展到[9]中的晶体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of periodic Dirac–Fock functional and minimizers
Existence of minimizers for the Dirac–Fock model for crystals was recently proved by Paturel and Séré and the authors [9]. In this paper, inspired by Ghimenti and Lewin's result [13] for the periodic Hartree–Fock model, we prove that the Fermi level of any periodic Dirac–Fock minimizer is either empty or totally filled when αcCcri and α>0. Here c is the speed of light, α is the fine structure constant, and Ccri is a constant only depending on the number of electrons and on the charge of nuclei per cell. More importantly, we provide an explicit upper bound for Ccri.
Our result implies that any minimizer of the periodic Dirac–Fock model is a projector when αcCcri and α>0. In particular, the non-relativistic regime (i.e., c1) and the weak coupling regime (i.e., 0<α1) are covered.
The proof is based on a delicate study of a second-order expansion of the periodic Dirac–Fock functional composed with a retraction that was introduced by Séré in [24] for atoms and molecules and later extended to the case of crystals in [9].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信