基于Cattaneo-Christov理论的混合纳米流体MHD辐射流和传热预测的数值和人工神经网络框架

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Fathi Alimi , Sohail Rehman , Mohamed Bouzidi , Fisal Asiri , Taoufik Saidani , Vineet Tirth
{"title":"基于Cattaneo-Christov理论的混合纳米流体MHD辐射流和传热预测的数值和人工神经网络框架","authors":"Fathi Alimi ,&nbsp;Sohail Rehman ,&nbsp;Mohamed Bouzidi ,&nbsp;Fisal Asiri ,&nbsp;Taoufik Saidani ,&nbsp;Vineet Tirth","doi":"10.1016/j.csite.2025.106311","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the artificial neural network (ANN) is executed to scrutinize the heat transfer performance of water-based hybrid nanofluid (HNF) flow over a permeable stretching surface under the influence of an inclined magnetic field and thermal radiation. The advanced Cattaneo–Christov heat flux model (CCHFM), is introduced in this study in order to characterize the heat transfer features in a boundary layer (BL) slip flow, with thermal radiation, variable thermal conductivity and nanoparticles diffusion. The equation of energy is renovated taking thermal radiation, variable thermal conductivity, thermal jump and thermal relaxation effects. The flow model is constructed using BL approximation and necessary assumption while the Robin type boundary conditions are obtained by assuming thermal jump and velocity slip. The modified first order differential equations are solved using Bvp4c mechanism. The findings reveals that the coefficient of frictional drag is reduced by the magnetic parameter while contrary behavior is seen for nanoparticle volume fraction. The precision of the ANN model appeared astounding, with an error range of 10 <span><math><mrow><msup><mi>E</mi><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></math></span> to 10 <span><math><mrow><msup><mi>E</mi><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow></math></span>. The regression values that are nearer 1 indicate a good fit between the actual data and the forecasts. The thermal relaxation parameter diminished the temperature and heat dissipation.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"72 ","pages":"Article 106311"},"PeriodicalIF":6.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical and artificial neural network framework for predicating MHD radiative flow and heat transfer of hybrid nanofluid with Cattaneo-Christov theory\",\"authors\":\"Fathi Alimi ,&nbsp;Sohail Rehman ,&nbsp;Mohamed Bouzidi ,&nbsp;Fisal Asiri ,&nbsp;Taoufik Saidani ,&nbsp;Vineet Tirth\",\"doi\":\"10.1016/j.csite.2025.106311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the artificial neural network (ANN) is executed to scrutinize the heat transfer performance of water-based hybrid nanofluid (HNF) flow over a permeable stretching surface under the influence of an inclined magnetic field and thermal radiation. The advanced Cattaneo–Christov heat flux model (CCHFM), is introduced in this study in order to characterize the heat transfer features in a boundary layer (BL) slip flow, with thermal radiation, variable thermal conductivity and nanoparticles diffusion. The equation of energy is renovated taking thermal radiation, variable thermal conductivity, thermal jump and thermal relaxation effects. The flow model is constructed using BL approximation and necessary assumption while the Robin type boundary conditions are obtained by assuming thermal jump and velocity slip. The modified first order differential equations are solved using Bvp4c mechanism. The findings reveals that the coefficient of frictional drag is reduced by the magnetic parameter while contrary behavior is seen for nanoparticle volume fraction. The precision of the ANN model appeared astounding, with an error range of 10 <span><math><mrow><msup><mi>E</mi><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></math></span> to 10 <span><math><mrow><msup><mi>E</mi><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow></math></span>. The regression values that are nearer 1 indicate a good fit between the actual data and the forecasts. The thermal relaxation parameter diminished the temperature and heat dissipation.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"72 \",\"pages\":\"Article 106311\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25005714\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25005714","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文采用人工神经网络(ANN)研究了在倾斜磁场和热辐射的影响下,水基混合纳米流体(HNF)在可渗透拉伸表面上的传热性能。本文采用先进的Cattaneo-Christov热流密度模型(CCHFM),对热辐射、变热导率和纳米颗粒扩散的边界层滑移流动的传热特征进行了表征。考虑热辐射、变导热系数、热跳变和热松弛效应,对能量方程进行了修正。采用BL近似和必要的假设建立了流动模型,通过假设热跳变和速度滑移得到了Robin型边界条件。利用Bvp4c机制求解修正后的一阶微分方程。研究结果表明,磁性参数降低了摩擦阻力系数,而纳米颗粒体积分数则相反。人工神经网络模型的精度令人震惊,误差范围为10 E−8到10 E−9。回归值接近1表示实际数据与预测之间的拟合良好。热松弛参数降低了温度和散热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical and artificial neural network framework for predicating MHD radiative flow and heat transfer of hybrid nanofluid with Cattaneo-Christov theory
In this paper, the artificial neural network (ANN) is executed to scrutinize the heat transfer performance of water-based hybrid nanofluid (HNF) flow over a permeable stretching surface under the influence of an inclined magnetic field and thermal radiation. The advanced Cattaneo–Christov heat flux model (CCHFM), is introduced in this study in order to characterize the heat transfer features in a boundary layer (BL) slip flow, with thermal radiation, variable thermal conductivity and nanoparticles diffusion. The equation of energy is renovated taking thermal radiation, variable thermal conductivity, thermal jump and thermal relaxation effects. The flow model is constructed using BL approximation and necessary assumption while the Robin type boundary conditions are obtained by assuming thermal jump and velocity slip. The modified first order differential equations are solved using Bvp4c mechanism. The findings reveals that the coefficient of frictional drag is reduced by the magnetic parameter while contrary behavior is seen for nanoparticle volume fraction. The precision of the ANN model appeared astounding, with an error range of 10 E8 to 10 E9. The regression values that are nearer 1 indicate a good fit between the actual data and the forecasts. The thermal relaxation parameter diminished the temperature and heat dissipation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信