{"title":"利用含有间隔分裂crRNA的CRISPR-Cas12a系统特异性检测DNA和RNA","authors":"Wenjing Ren, Mingzhi Li, Xinyue Liu, Weixin You, Qianqian You, Boan Li, Huiming Ye, Rui Zhang","doi":"10.1016/j.aca.2025.344204","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>The CRISPR/Cas12a system has emerged as a versatile molecular diagnostic tool due to its dual cis- and trans-cleavage activities. However, two key limitations hinder its broad application: high tolerance to single-base mismatches in DNA targets and strict reliance on DNA activators. To address these challenges, we hypothesized that structural reengineering of crRNA could enhance specificity and functional versatility. This study aimed to develop a modified Cas12a system capable of detecting DNA and RNA targets with improved single-base resolution, thereby expanding its utility in molecular diagnostics and clinical subclassification.<h3>Results</h3>We engineered split crRNAs by introducing a split site within the spacer region, creating a spacer-split crRNA-activated Cas12a system (SPCas12a). This system exhibited three key advantages: First, SPCas12a demonstrated significantly enhanced specificity in discriminating single-base mutations compared to conventional full-sized crRNA systems. Second, it bypassed the DNA activator requirement, enabling direct detection of miRNA targets without reverse transcription. In addition, AlphaFold Server predictive structural modeling analysis showed that the split site selected by SPCas12a gives the Cas12a complex an open structural domain, which is conducive to the stable function of Cas12a. Third, integration with isothermal amplification enabled constructing an \"AND\" logic gate detection platform that processes multiple inputs within 40 minutes. As a proof-of-concept, SPCas12a successfully distinguished triple-negative breast cancer (TNBC) subtype cell lines by analyzing miRNA-210 and miRNA-21 biomarkers in different cell lines.<h3>Significance</h3>SPCas12a overcomes fundamental limitations of current CRISPR diagnostics by unifying high-specificity DNA mutation detection and direct RNA sensing in a single platform. The split-crRNA design principle provides a universally adaptable strategy to enhance CRISPR-Cas systems, with immediate applications in precision oncology and infectious disease stratification where base-level discrimination and multi-target detection are critical.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"30 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specific detection of DNA and RNA by the CRISPR-Cas12a system containing spacer split crRNA\",\"authors\":\"Wenjing Ren, Mingzhi Li, Xinyue Liu, Weixin You, Qianqian You, Boan Li, Huiming Ye, Rui Zhang\",\"doi\":\"10.1016/j.aca.2025.344204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Background</h3>The CRISPR/Cas12a system has emerged as a versatile molecular diagnostic tool due to its dual cis- and trans-cleavage activities. However, two key limitations hinder its broad application: high tolerance to single-base mismatches in DNA targets and strict reliance on DNA activators. To address these challenges, we hypothesized that structural reengineering of crRNA could enhance specificity and functional versatility. This study aimed to develop a modified Cas12a system capable of detecting DNA and RNA targets with improved single-base resolution, thereby expanding its utility in molecular diagnostics and clinical subclassification.<h3>Results</h3>We engineered split crRNAs by introducing a split site within the spacer region, creating a spacer-split crRNA-activated Cas12a system (SPCas12a). This system exhibited three key advantages: First, SPCas12a demonstrated significantly enhanced specificity in discriminating single-base mutations compared to conventional full-sized crRNA systems. Second, it bypassed the DNA activator requirement, enabling direct detection of miRNA targets without reverse transcription. In addition, AlphaFold Server predictive structural modeling analysis showed that the split site selected by SPCas12a gives the Cas12a complex an open structural domain, which is conducive to the stable function of Cas12a. Third, integration with isothermal amplification enabled constructing an \\\"AND\\\" logic gate detection platform that processes multiple inputs within 40 minutes. As a proof-of-concept, SPCas12a successfully distinguished triple-negative breast cancer (TNBC) subtype cell lines by analyzing miRNA-210 and miRNA-21 biomarkers in different cell lines.<h3>Significance</h3>SPCas12a overcomes fundamental limitations of current CRISPR diagnostics by unifying high-specificity DNA mutation detection and direct RNA sensing in a single platform. The split-crRNA design principle provides a universally adaptable strategy to enhance CRISPR-Cas systems, with immediate applications in precision oncology and infectious disease stratification where base-level discrimination and multi-target detection are critical.\",\"PeriodicalId\":240,\"journal\":{\"name\":\"Analytica Chimica Acta\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aca.2025.344204\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.344204","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Specific detection of DNA and RNA by the CRISPR-Cas12a system containing spacer split crRNA
Background
The CRISPR/Cas12a system has emerged as a versatile molecular diagnostic tool due to its dual cis- and trans-cleavage activities. However, two key limitations hinder its broad application: high tolerance to single-base mismatches in DNA targets and strict reliance on DNA activators. To address these challenges, we hypothesized that structural reengineering of crRNA could enhance specificity and functional versatility. This study aimed to develop a modified Cas12a system capable of detecting DNA and RNA targets with improved single-base resolution, thereby expanding its utility in molecular diagnostics and clinical subclassification.
Results
We engineered split crRNAs by introducing a split site within the spacer region, creating a spacer-split crRNA-activated Cas12a system (SPCas12a). This system exhibited three key advantages: First, SPCas12a demonstrated significantly enhanced specificity in discriminating single-base mutations compared to conventional full-sized crRNA systems. Second, it bypassed the DNA activator requirement, enabling direct detection of miRNA targets without reverse transcription. In addition, AlphaFold Server predictive structural modeling analysis showed that the split site selected by SPCas12a gives the Cas12a complex an open structural domain, which is conducive to the stable function of Cas12a. Third, integration with isothermal amplification enabled constructing an "AND" logic gate detection platform that processes multiple inputs within 40 minutes. As a proof-of-concept, SPCas12a successfully distinguished triple-negative breast cancer (TNBC) subtype cell lines by analyzing miRNA-210 and miRNA-21 biomarkers in different cell lines.
Significance
SPCas12a overcomes fundamental limitations of current CRISPR diagnostics by unifying high-specificity DNA mutation detection and direct RNA sensing in a single platform. The split-crRNA design principle provides a universally adaptable strategy to enhance CRISPR-Cas systems, with immediate applications in precision oncology and infectious disease stratification where base-level discrimination and multi-target detection are critical.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.