Cong Xiu , Jinyi Pan , Andrea D’Ariano , Shuguang Zhan , Marta Leonina Tessitore , Qiyuan Peng
{"title":"中断高速铁路网的列车重新调度和旅客重新分配:一种分层弯曲分解和列生成方法","authors":"Cong Xiu , Jinyi Pan , Andrea D’Ariano , Shuguang Zhan , Marta Leonina Tessitore , Qiyuan Peng","doi":"10.1016/j.tre.2025.104177","DOIUrl":null,"url":null,"abstract":"<div><div>Disruptions can render parts of the critical transportation systems unavailable, forcing both trains and passengers to adapt. This study addresses the integrated rescheduling problem in a high-speed railway network during severe disruptions, focusing on train routing, timetable adjustments, and passenger reassignment. We employ rescheduling strategies that allow disrupted trains to reroute through alternative paths within stations and across the network, utilizing remaining capacity to ensure reliable service for affected passengers. To tackle this issue, we propose a path-based mixed-integer linear programming (MILP) model based on detailed space–time networks, aiming to minimize total train delays and passenger inconvenience caused by disruptions. However, solving this integrated model using the column generation method presents convergence challenges as the problem scale increases. To address these challenges, we introduce a hierarchical solution framework with two main components: (1) a Benders decomposition-based procedure to iteratively capture the interaction between train rescheduling and passenger reassignment, and (2) two column generation procedures to explore promising space–time paths for both trains and passengers. Additionally, a dynamic constraint generation technique is integrated to further accelerate the solution process. Numerical experiments using real-world data from Chinese high-speed railway network validate the effectiveness of the proposed approach. The results show that our method delivers high-quality solutions within an acceptable time frame, efficiently reassigning passengers and rerouting trains during disruptions. Experimental findings also reveal that integrated modeling improves overall efficiency by 17.32% on average compared to sequential modeling. Furthermore, the proposed hierarchical algorithm significantly outperforms traditional column generation methods, reducing computation time by an average of 53.82%.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"200 ","pages":"Article 104177"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated train rescheduling and passenger reassignment for disrupted high-speed railway networks: A hierarchical Benders decomposition and column generation approach\",\"authors\":\"Cong Xiu , Jinyi Pan , Andrea D’Ariano , Shuguang Zhan , Marta Leonina Tessitore , Qiyuan Peng\",\"doi\":\"10.1016/j.tre.2025.104177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Disruptions can render parts of the critical transportation systems unavailable, forcing both trains and passengers to adapt. This study addresses the integrated rescheduling problem in a high-speed railway network during severe disruptions, focusing on train routing, timetable adjustments, and passenger reassignment. We employ rescheduling strategies that allow disrupted trains to reroute through alternative paths within stations and across the network, utilizing remaining capacity to ensure reliable service for affected passengers. To tackle this issue, we propose a path-based mixed-integer linear programming (MILP) model based on detailed space–time networks, aiming to minimize total train delays and passenger inconvenience caused by disruptions. However, solving this integrated model using the column generation method presents convergence challenges as the problem scale increases. To address these challenges, we introduce a hierarchical solution framework with two main components: (1) a Benders decomposition-based procedure to iteratively capture the interaction between train rescheduling and passenger reassignment, and (2) two column generation procedures to explore promising space–time paths for both trains and passengers. Additionally, a dynamic constraint generation technique is integrated to further accelerate the solution process. Numerical experiments using real-world data from Chinese high-speed railway network validate the effectiveness of the proposed approach. The results show that our method delivers high-quality solutions within an acceptable time frame, efficiently reassigning passengers and rerouting trains during disruptions. Experimental findings also reveal that integrated modeling improves overall efficiency by 17.32% on average compared to sequential modeling. Furthermore, the proposed hierarchical algorithm significantly outperforms traditional column generation methods, reducing computation time by an average of 53.82%.</div></div>\",\"PeriodicalId\":49418,\"journal\":{\"name\":\"Transportation Research Part E-Logistics and Transportation Review\",\"volume\":\"200 \",\"pages\":\"Article 104177\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part E-Logistics and Transportation Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1366554525002182\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554525002182","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Integrated train rescheduling and passenger reassignment for disrupted high-speed railway networks: A hierarchical Benders decomposition and column generation approach
Disruptions can render parts of the critical transportation systems unavailable, forcing both trains and passengers to adapt. This study addresses the integrated rescheduling problem in a high-speed railway network during severe disruptions, focusing on train routing, timetable adjustments, and passenger reassignment. We employ rescheduling strategies that allow disrupted trains to reroute through alternative paths within stations and across the network, utilizing remaining capacity to ensure reliable service for affected passengers. To tackle this issue, we propose a path-based mixed-integer linear programming (MILP) model based on detailed space–time networks, aiming to minimize total train delays and passenger inconvenience caused by disruptions. However, solving this integrated model using the column generation method presents convergence challenges as the problem scale increases. To address these challenges, we introduce a hierarchical solution framework with two main components: (1) a Benders decomposition-based procedure to iteratively capture the interaction between train rescheduling and passenger reassignment, and (2) two column generation procedures to explore promising space–time paths for both trains and passengers. Additionally, a dynamic constraint generation technique is integrated to further accelerate the solution process. Numerical experiments using real-world data from Chinese high-speed railway network validate the effectiveness of the proposed approach. The results show that our method delivers high-quality solutions within an acceptable time frame, efficiently reassigning passengers and rerouting trains during disruptions. Experimental findings also reveal that integrated modeling improves overall efficiency by 17.32% on average compared to sequential modeling. Furthermore, the proposed hierarchical algorithm significantly outperforms traditional column generation methods, reducing computation time by an average of 53.82%.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.