{"title":"具有连续网络结构的坚韧和强大的生物灵感高熵全陶瓷","authors":"Zijie Zhu, Yiwen Liu, Yuanbin Qin, Fangchao Gu, Lei Zhuang, Hulei Yu, Yanhui Chu","doi":"10.1038/s41467-025-59914-9","DOIUrl":null,"url":null,"abstract":"<p>Developing bioinspired all-ceramics with plastic phases is considered one of the most effective ways to simultaneously achieve enhanced strength and toughness in ceramic materials for high-temperature applications. Here we explore tough and strong bioinspired high-entropy all-ceramics with a contiguous network structure that are able to serve up to 1300 °C. Specifically, we develop the high-entropy all-ceramics, featuring a unique contiguous network distribution of the Cr<sub>7</sub>C<sub>3</sub> plastic phase within the predominant high-entropy carbide (HEC) hard phase, through a high-entropy composition-engineering strategy. The resulting materials exhibit impressive fracture initiation toughness of 12.5 ± 1.5 MPa·m<sup>1/2</sup> and flexural strength of 613 ± 52 MPa at room temperature, as well as ~97% strength retention up to 1300 °C due to their good high-temperature stability, surpassing the performance of most other reported bioinspired ceramics. Further experimental and theoretical investigations demonstrate that the Cr<sub>7</sub>C<sub>3</sub> phase can undergo plastic deformation by forming nanoscale shear bands with significant crystal defects, resulting in multiple toughening mechanisms involving crack-bridging of unfractured Cr<sub>7</sub>C<sub>3</sub> ligaments and crack deflection in the HEC/Cr<sub>7</sub>C<sub>3</sub> all-ceramics. This work successfully develops tough and strong bioinspired high-entropy all-ceramics capable of serving up to 1300 °C, offering an innovative strategy that facilitates further design of bioinspired ceramics applicable at higher temperatures.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"25 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tough and strong bioinspired high-entropy all-ceramics with a contiguous network structure\",\"authors\":\"Zijie Zhu, Yiwen Liu, Yuanbin Qin, Fangchao Gu, Lei Zhuang, Hulei Yu, Yanhui Chu\",\"doi\":\"10.1038/s41467-025-59914-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing bioinspired all-ceramics with plastic phases is considered one of the most effective ways to simultaneously achieve enhanced strength and toughness in ceramic materials for high-temperature applications. Here we explore tough and strong bioinspired high-entropy all-ceramics with a contiguous network structure that are able to serve up to 1300 °C. Specifically, we develop the high-entropy all-ceramics, featuring a unique contiguous network distribution of the Cr<sub>7</sub>C<sub>3</sub> plastic phase within the predominant high-entropy carbide (HEC) hard phase, through a high-entropy composition-engineering strategy. The resulting materials exhibit impressive fracture initiation toughness of 12.5 ± 1.5 MPa·m<sup>1/2</sup> and flexural strength of 613 ± 52 MPa at room temperature, as well as ~97% strength retention up to 1300 °C due to their good high-temperature stability, surpassing the performance of most other reported bioinspired ceramics. Further experimental and theoretical investigations demonstrate that the Cr<sub>7</sub>C<sub>3</sub> phase can undergo plastic deformation by forming nanoscale shear bands with significant crystal defects, resulting in multiple toughening mechanisms involving crack-bridging of unfractured Cr<sub>7</sub>C<sub>3</sub> ligaments and crack deflection in the HEC/Cr<sub>7</sub>C<sub>3</sub> all-ceramics. This work successfully develops tough and strong bioinspired high-entropy all-ceramics capable of serving up to 1300 °C, offering an innovative strategy that facilitates further design of bioinspired ceramics applicable at higher temperatures.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59914-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59914-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Tough and strong bioinspired high-entropy all-ceramics with a contiguous network structure
Developing bioinspired all-ceramics with plastic phases is considered one of the most effective ways to simultaneously achieve enhanced strength and toughness in ceramic materials for high-temperature applications. Here we explore tough and strong bioinspired high-entropy all-ceramics with a contiguous network structure that are able to serve up to 1300 °C. Specifically, we develop the high-entropy all-ceramics, featuring a unique contiguous network distribution of the Cr7C3 plastic phase within the predominant high-entropy carbide (HEC) hard phase, through a high-entropy composition-engineering strategy. The resulting materials exhibit impressive fracture initiation toughness of 12.5 ± 1.5 MPa·m1/2 and flexural strength of 613 ± 52 MPa at room temperature, as well as ~97% strength retention up to 1300 °C due to their good high-temperature stability, surpassing the performance of most other reported bioinspired ceramics. Further experimental and theoretical investigations demonstrate that the Cr7C3 phase can undergo plastic deformation by forming nanoscale shear bands with significant crystal defects, resulting in multiple toughening mechanisms involving crack-bridging of unfractured Cr7C3 ligaments and crack deflection in the HEC/Cr7C3 all-ceramics. This work successfully develops tough and strong bioinspired high-entropy all-ceramics capable of serving up to 1300 °C, offering an innovative strategy that facilitates further design of bioinspired ceramics applicable at higher temperatures.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.