大多数完全真实的场没有普遍形式或诺斯科特性质

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nicolas Daans, Vítězslav Kala, Siu Hang Man, Martin Widmer, Pavlo Yatsyna
{"title":"大多数完全真实的场没有普遍形式或诺斯科特性质","authors":"Nicolas Daans, Vítězslav Kala, Siu Hang Man, Martin Widmer, Pavlo Yatsyna","doi":"10.1073/pnas.2419414122","DOIUrl":null,"url":null,"abstract":"We show that, in the space of all totally real fields equipped with the constructible topology, the set of fields that admit a universal quadratic form, or have the Northcott property, is meager. The main tool is a theorem on the number of square classes of totally positive units represented by a quadratic lattice of a given rank.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"4 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Most totally real fields do not have universal forms or the Northcott property\",\"authors\":\"Nicolas Daans, Vítězslav Kala, Siu Hang Man, Martin Widmer, Pavlo Yatsyna\",\"doi\":\"10.1073/pnas.2419414122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that, in the space of all totally real fields equipped with the constructible topology, the set of fields that admit a universal quadratic form, or have the Northcott property, is meager. The main tool is a theorem on the number of square classes of totally positive units represented by a quadratic lattice of a given rank.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2419414122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2419414122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在具有可构造拓扑的全实数域的空间中,承认具有全称二次型或具有Northcott性质的域的集合是很少的。主要的工具是关于由给定秩的二次格表示的完全正单元的平方类的数目的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Most totally real fields do not have universal forms or the Northcott property
We show that, in the space of all totally real fields equipped with the constructible topology, the set of fields that admit a universal quadratic form, or have the Northcott property, is meager. The main tool is a theorem on the number of square classes of totally positive units represented by a quadratic lattice of a given rank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信