二酮吡咯在锂硫电池中的氧化还原介质作用

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joanne S. Searle, Ferdinando Malagreca, Benjamin M. G. Denison, Alexander J. Kibler, Darren A. Walsh, Lee R. Johnson, David B. Amabilino, Graham N. Newton
{"title":"二酮吡咯在锂硫电池中的氧化还原介质作用","authors":"Joanne S. Searle, Ferdinando Malagreca, Benjamin M. G. Denison, Alexander J. Kibler, Darren A. Walsh, Lee R. Johnson, David B. Amabilino, Graham N. Newton","doi":"10.1021/acsenergylett.5c01262","DOIUrl":null,"url":null,"abstract":"Lithium–sulfur (Li–S) batteries are among the most promising next-generation energy storage technologies, offering gravimetric energy densities greater than those of state-of-the-art lithium-ion batteries. However, widespread commercialization of the technology is hindered by challenges related to the multistep redox chemistry of sulfur. The addition of diketopyrollopyrroles (DPPs) to Li–S battery electrolytes can improve cell performance; however, their mechanism of action remains unclear. Here, we use a range of electrochemical methods to elucidate the mechanism through which DPPs affect the performance of the Li–S batteries. Electrochemical analysis demonstrates the importance of DPP redox potentials in enhancing the redox kinetics of polysulfide reduction, with analytical measurements confirming this is via a redox mediation process in which electrons are shuttled between polysulfide intermediates and the underlying current collector via the DPP molecule. We show that DPP derivatives that are not redox active at the potentials associated with the multi-step interconversion of sulfur and lithium sulfide in Li–S batteries do not show the same effect. Galvanostatic analysis confirms that the enhancement of the kinetics of polysulfide conversion translates to the operation of Li–S batteries, which show an improvement in the discharge capacity after the addition of the additives.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"64 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diketopyrrolopyrroles Act as Redox Mediators in Lithium–Sulfur Batteries\",\"authors\":\"Joanne S. Searle, Ferdinando Malagreca, Benjamin M. G. Denison, Alexander J. Kibler, Darren A. Walsh, Lee R. Johnson, David B. Amabilino, Graham N. Newton\",\"doi\":\"10.1021/acsenergylett.5c01262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium–sulfur (Li–S) batteries are among the most promising next-generation energy storage technologies, offering gravimetric energy densities greater than those of state-of-the-art lithium-ion batteries. However, widespread commercialization of the technology is hindered by challenges related to the multistep redox chemistry of sulfur. The addition of diketopyrollopyrroles (DPPs) to Li–S battery electrolytes can improve cell performance; however, their mechanism of action remains unclear. Here, we use a range of electrochemical methods to elucidate the mechanism through which DPPs affect the performance of the Li–S batteries. Electrochemical analysis demonstrates the importance of DPP redox potentials in enhancing the redox kinetics of polysulfide reduction, with analytical measurements confirming this is via a redox mediation process in which electrons are shuttled between polysulfide intermediates and the underlying current collector via the DPP molecule. We show that DPP derivatives that are not redox active at the potentials associated with the multi-step interconversion of sulfur and lithium sulfide in Li–S batteries do not show the same effect. Galvanostatic analysis confirms that the enhancement of the kinetics of polysulfide conversion translates to the operation of Li–S batteries, which show an improvement in the discharge capacity after the addition of the additives.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.5c01262\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c01262","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂硫(li -硫)电池是最有前途的下一代储能技术之一,其重量能量密度高于最先进的锂离子电池。然而,该技术的广泛商业化受到与硫的多步氧化还原化学相关的挑战的阻碍。在Li-S电池电解液中添加双酮基吡咯(DPPs)可以提高电池性能;然而,它们的作用机制尚不清楚。在这里,我们使用一系列电化学方法来阐明DPPs影响Li-S电池性能的机制。电化学分析证明了DPP氧化还原电位在增强多硫化物还原的氧化还原动力学中的重要性,分析测量证实了这是通过氧化还原中介过程,在该过程中,电子通过DPP分子在多硫化物中间体和潜在的电流集电极之间来回传递。我们表明,在Li-S电池中与硫和硫化锂多步相互转化相关的电位下不具有氧化还原活性的DPP衍生物不会显示出相同的效果。恒流分析证实,多硫化物转化动力学的增强转化为Li-S电池的运行,表明添加添加剂后锂离子电池的放电容量有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Diketopyrrolopyrroles Act as Redox Mediators in Lithium–Sulfur Batteries

Diketopyrrolopyrroles Act as Redox Mediators in Lithium–Sulfur Batteries
Lithium–sulfur (Li–S) batteries are among the most promising next-generation energy storage technologies, offering gravimetric energy densities greater than those of state-of-the-art lithium-ion batteries. However, widespread commercialization of the technology is hindered by challenges related to the multistep redox chemistry of sulfur. The addition of diketopyrollopyrroles (DPPs) to Li–S battery electrolytes can improve cell performance; however, their mechanism of action remains unclear. Here, we use a range of electrochemical methods to elucidate the mechanism through which DPPs affect the performance of the Li–S batteries. Electrochemical analysis demonstrates the importance of DPP redox potentials in enhancing the redox kinetics of polysulfide reduction, with analytical measurements confirming this is via a redox mediation process in which electrons are shuttled between polysulfide intermediates and the underlying current collector via the DPP molecule. We show that DPP derivatives that are not redox active at the potentials associated with the multi-step interconversion of sulfur and lithium sulfide in Li–S batteries do not show the same effect. Galvanostatic analysis confirms that the enhancement of the kinetics of polysulfide conversion translates to the operation of Li–S batteries, which show an improvement in the discharge capacity after the addition of the additives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信