Dimitrios Karamitros, Thomas McKelvey, Apostolos Pilaftsis
{"title":"临界不稳定量子比特:在B0B¯0介子系统中的应用","authors":"Dimitrios Karamitros, Thomas McKelvey, Apostolos Pilaftsis","doi":"10.1103/physrevd.111.096020","DOIUrl":null,"url":null,"abstract":"We extend our previous work on a novel class of unstable qubits which we have identified recently and called them critical unstable qubits (CUQs). The characteristic property of CUQs is that the energy-level and decay-width vectors, E</a:mi></a:math> and <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mi mathvariant=\"bold\">Γ</d:mi></d:math>, are orthogonal to one another, and the key parameter <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mi>r</g:mi><g:mo>=</g:mo><g:mo stretchy=\"false\">|</g:mo><g:mi mathvariant=\"bold\">Γ</g:mi><g:mo stretchy=\"false\">|</g:mo><g:mo>/</g:mo><g:mo stretchy=\"false\">|</g:mo><g:mn>2</g:mn><g:mi mathvariant=\"bold\">E</g:mi><g:mo stretchy=\"false\">|</g:mo></g:mrow></g:math> is less than 1. Most remarkably, CUQs exhibit two atypical behaviors: (i) they display coherence-decoherence oscillations in a co-decaying frame of the system described by a unit Bloch vector <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi mathvariant=\"bold\">b</o:mi></o:math>, and (ii) the unit Bloch vector <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mi mathvariant=\"bold\">b</r:mi></r:math> describing a pure CUQ sweeps out unequal areas during equal intervals of time, while rotating about the vector <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi mathvariant=\"bold\">E</u:mi></u:math>. The latter phenomenon emerges beyond the usual oscillatory pattern due to the energy-level difference of the two-level quantum system, which governs an ordinary qubit. By making use of a Fourier series decomposition, we define anharmonicity observables that quantify the degree of oscillation of a CUQ. We apply the results of our formalism to the <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:msup><x:mi>B</x:mi><x:mn>0</x:mn></x:msup><x:msup><x:mover accent=\"true\"><x:mi>B</x:mi><x:mo stretchy=\"false\">¯</x:mo></x:mover><x:mn>0</x:mn></x:msup></x:math>-meson system and derive, for the first time, generic upper limits on these new observables. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"14 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical unstable qubits: An application to the B0B¯0 meson system\",\"authors\":\"Dimitrios Karamitros, Thomas McKelvey, Apostolos Pilaftsis\",\"doi\":\"10.1103/physrevd.111.096020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend our previous work on a novel class of unstable qubits which we have identified recently and called them critical unstable qubits (CUQs). The characteristic property of CUQs is that the energy-level and decay-width vectors, E</a:mi></a:math> and <d:math xmlns:d=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><d:mi mathvariant=\\\"bold\\\">Γ</d:mi></d:math>, are orthogonal to one another, and the key parameter <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mrow><g:mi>r</g:mi><g:mo>=</g:mo><g:mo stretchy=\\\"false\\\">|</g:mo><g:mi mathvariant=\\\"bold\\\">Γ</g:mi><g:mo stretchy=\\\"false\\\">|</g:mo><g:mo>/</g:mo><g:mo stretchy=\\\"false\\\">|</g:mo><g:mn>2</g:mn><g:mi mathvariant=\\\"bold\\\">E</g:mi><g:mo stretchy=\\\"false\\\">|</g:mo></g:mrow></g:math> is less than 1. Most remarkably, CUQs exhibit two atypical behaviors: (i) they display coherence-decoherence oscillations in a co-decaying frame of the system described by a unit Bloch vector <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mi mathvariant=\\\"bold\\\">b</o:mi></o:math>, and (ii) the unit Bloch vector <r:math xmlns:r=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><r:mi mathvariant=\\\"bold\\\">b</r:mi></r:math> describing a pure CUQ sweeps out unequal areas during equal intervals of time, while rotating about the vector <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mi mathvariant=\\\"bold\\\">E</u:mi></u:math>. The latter phenomenon emerges beyond the usual oscillatory pattern due to the energy-level difference of the two-level quantum system, which governs an ordinary qubit. By making use of a Fourier series decomposition, we define anharmonicity observables that quantify the degree of oscillation of a CUQ. We apply the results of our formalism to the <x:math xmlns:x=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><x:msup><x:mi>B</x:mi><x:mn>0</x:mn></x:msup><x:msup><x:mover accent=\\\"true\\\"><x:mi>B</x:mi><x:mo stretchy=\\\"false\\\">¯</x:mo></x:mover><x:mn>0</x:mn></x:msup></x:math>-meson system and derive, for the first time, generic upper limits on these new observables. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.096020\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.096020","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Critical unstable qubits: An application to the B0B¯0 meson system
We extend our previous work on a novel class of unstable qubits which we have identified recently and called them critical unstable qubits (CUQs). The characteristic property of CUQs is that the energy-level and decay-width vectors, E and Γ, are orthogonal to one another, and the key parameter r=|Γ|/|2E| is less than 1. Most remarkably, CUQs exhibit two atypical behaviors: (i) they display coherence-decoherence oscillations in a co-decaying frame of the system described by a unit Bloch vector b, and (ii) the unit Bloch vector b describing a pure CUQ sweeps out unequal areas during equal intervals of time, while rotating about the vector E. The latter phenomenon emerges beyond the usual oscillatory pattern due to the energy-level difference of the two-level quantum system, which governs an ordinary qubit. By making use of a Fourier series decomposition, we define anharmonicity observables that quantify the degree of oscillation of a CUQ. We apply the results of our formalism to the B0B¯0-meson system and derive, for the first time, generic upper limits on these new observables. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.