单宁酸程序化羟基磷灰石生物矿化使双层骨仿生水凝胶用于下颌再生

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yongxi Luo, Jiahao Lin, Xinmiao Luo, Guangbing Luo, Jianyong Zou, Liu Cai, Yutong He, Xiaozhong Qiu, Huiyong Xu
{"title":"单宁酸程序化羟基磷灰石生物矿化使双层骨仿生水凝胶用于下颌再生","authors":"Yongxi Luo, Jiahao Lin, Xinmiao Luo, Guangbing Luo, Jianyong Zou, Liu Cai, Yutong He, Xiaozhong Qiu, Huiyong Xu","doi":"10.1021/acs.chemmater.5c00840","DOIUrl":null,"url":null,"abstract":"The effective restoration of mandibular defects continues to pose a significant clinical challenge. Although biomimetic hydrogels have shown potential in bone tissue engineering, existing approaches fail to simultaneously replicate the hierarchical architecture of native bone and dynamically regulate the osteogenic niche. This study presents a bioinspired hydrogel system engineered through green hydrogen-bond cross-linking integrated with tannic acid-mediated gradient mineralization, achieving precise emulation of cortical–trabecular bone interfaces across multiple scales. The hydrogel demonstrates multifunctional therapeutic capabilities, including targeted recruitment of bone marrow mesenchymal stem cells, synchronized modulation of oxidative stress, transition of M1 macrophages to M2 macrophages, broad-spectrum antimicrobial activity, and potent osteogenic differentiation. Through spatiotemporal control of microenvironmental cues, the construct establishes a self-regulating repair niche that coordinates angiogenesis and osteogenesis. In vivo evaluation utilizing a rat mandibular defect model confirmed the hydrogel’s efficacy in enhancing osseous regeneration and restoring biomechanical competence. This work pioneers a structural-dynamic dual-regulation strategy, advancing translational solutions for complex craniofacial reconstruction.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"29 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tannic Acid-Programmed Hydroxyapatite Biomineralization Enables Bilayered Bone-Mimetic Hydrogels for Mandibular Regeneration\",\"authors\":\"Yongxi Luo, Jiahao Lin, Xinmiao Luo, Guangbing Luo, Jianyong Zou, Liu Cai, Yutong He, Xiaozhong Qiu, Huiyong Xu\",\"doi\":\"10.1021/acs.chemmater.5c00840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effective restoration of mandibular defects continues to pose a significant clinical challenge. Although biomimetic hydrogels have shown potential in bone tissue engineering, existing approaches fail to simultaneously replicate the hierarchical architecture of native bone and dynamically regulate the osteogenic niche. This study presents a bioinspired hydrogel system engineered through green hydrogen-bond cross-linking integrated with tannic acid-mediated gradient mineralization, achieving precise emulation of cortical–trabecular bone interfaces across multiple scales. The hydrogel demonstrates multifunctional therapeutic capabilities, including targeted recruitment of bone marrow mesenchymal stem cells, synchronized modulation of oxidative stress, transition of M1 macrophages to M2 macrophages, broad-spectrum antimicrobial activity, and potent osteogenic differentiation. Through spatiotemporal control of microenvironmental cues, the construct establishes a self-regulating repair niche that coordinates angiogenesis and osteogenesis. In vivo evaluation utilizing a rat mandibular defect model confirmed the hydrogel’s efficacy in enhancing osseous regeneration and restoring biomechanical competence. This work pioneers a structural-dynamic dual-regulation strategy, advancing translational solutions for complex craniofacial reconstruction.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.5c00840\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.5c00840","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

颌骨缺损的有效修复仍然是临床面临的重大挑战。尽管仿生水凝胶在骨组织工程中显示出潜力,但现有的方法无法同时复制天然骨的分层结构并动态调节成骨生态位。本研究提出了一种生物启发的水凝胶系统,通过绿色氢键交联结合单宁酸介导的梯度矿化,实现了皮质-小梁骨界面在多个尺度上的精确模拟。该水凝胶具有多种治疗功能,包括骨髓间充质干细胞的靶向募集、氧化应激的同步调节、M1巨噬细胞向M2巨噬细胞的转化、广谱抗菌活性和强大的成骨分化。通过微环境线索的时空控制,该结构建立了一个自我调节的修复生态位,协调血管生成和骨生成。利用大鼠下颌骨缺损模型的体内评估证实了水凝胶在促进骨再生和恢复生物力学能力方面的功效。这项工作开创了结构-动态双调节策略,推进了复杂颅面重建的翻译解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tannic Acid-Programmed Hydroxyapatite Biomineralization Enables Bilayered Bone-Mimetic Hydrogels for Mandibular Regeneration

Tannic Acid-Programmed Hydroxyapatite Biomineralization Enables Bilayered Bone-Mimetic Hydrogels for Mandibular Regeneration
The effective restoration of mandibular defects continues to pose a significant clinical challenge. Although biomimetic hydrogels have shown potential in bone tissue engineering, existing approaches fail to simultaneously replicate the hierarchical architecture of native bone and dynamically regulate the osteogenic niche. This study presents a bioinspired hydrogel system engineered through green hydrogen-bond cross-linking integrated with tannic acid-mediated gradient mineralization, achieving precise emulation of cortical–trabecular bone interfaces across multiple scales. The hydrogel demonstrates multifunctional therapeutic capabilities, including targeted recruitment of bone marrow mesenchymal stem cells, synchronized modulation of oxidative stress, transition of M1 macrophages to M2 macrophages, broad-spectrum antimicrobial activity, and potent osteogenic differentiation. Through spatiotemporal control of microenvironmental cues, the construct establishes a self-regulating repair niche that coordinates angiogenesis and osteogenesis. In vivo evaluation utilizing a rat mandibular defect model confirmed the hydrogel’s efficacy in enhancing osseous regeneration and restoring biomechanical competence. This work pioneers a structural-dynamic dual-regulation strategy, advancing translational solutions for complex craniofacial reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信