异构图神经网络增强了配水管网的压力估计

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Jian Wang , Li Liu , Dragan Savic , Guangtao Fu
{"title":"异构图神经网络增强了配水管网的压力估计","authors":"Jian Wang ,&nbsp;Li Liu ,&nbsp;Dragan Savic ,&nbsp;Guangtao Fu","doi":"10.1016/j.watres.2025.123843","DOIUrl":null,"url":null,"abstract":"<div><div>Pressure estimation is crucial for efficient operation and management of water distribution networks (WDNs). However, it is often challenged by limited sensor observations. While graph neural networks (GNNs) have been used to improve hydraulic and water quality predictions of WDNs, their reliance on homogeneous graphs oversimplifies the diverse roles and interactions of hydraulic components, resulting in lower performance under dynamic system states. This research introduces a novel heterogeneous graph neural network (HGNN) framework, which models control units such as pumps and valves as distinct nodes while preserving their interactions through additional edge types. Experimental results using C-Town as a benchmark demonstrate that HGNN outperforms GNN in terms of accuracy, robustness, and adaptability, achieving a mean absolute percentage error (MAPE) of 1.88 % and a mean absolute error (MAE) of 1.70 m under a 95 % masking rate. Additionally, this study shows that optimal sensor placement reduces MAE by up to 15 %, and the proposed HGNN framework achieves high computational efficiency, highlighting its effectiveness in WDN analysis and management. This research offers an advanced and transferable approach for WDN pressure estimation, serving as a superior alternative to traditional pressure evaluation models.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"283 ","pages":"Article 123843"},"PeriodicalIF":11.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous graph neural networks enhance pressure estimation in water distribution networks\",\"authors\":\"Jian Wang ,&nbsp;Li Liu ,&nbsp;Dragan Savic ,&nbsp;Guangtao Fu\",\"doi\":\"10.1016/j.watres.2025.123843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pressure estimation is crucial for efficient operation and management of water distribution networks (WDNs). However, it is often challenged by limited sensor observations. While graph neural networks (GNNs) have been used to improve hydraulic and water quality predictions of WDNs, their reliance on homogeneous graphs oversimplifies the diverse roles and interactions of hydraulic components, resulting in lower performance under dynamic system states. This research introduces a novel heterogeneous graph neural network (HGNN) framework, which models control units such as pumps and valves as distinct nodes while preserving their interactions through additional edge types. Experimental results using C-Town as a benchmark demonstrate that HGNN outperforms GNN in terms of accuracy, robustness, and adaptability, achieving a mean absolute percentage error (MAPE) of 1.88 % and a mean absolute error (MAE) of 1.70 m under a 95 % masking rate. Additionally, this study shows that optimal sensor placement reduces MAE by up to 15 %, and the proposed HGNN framework achieves high computational efficiency, highlighting its effectiveness in WDN analysis and management. This research offers an advanced and transferable approach for WDN pressure estimation, serving as a superior alternative to traditional pressure evaluation models.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"283 \",\"pages\":\"Article 123843\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135425007511\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425007511","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

压力估算是供水管网高效运行和管理的关键。然而,它经常受到有限的传感器观测的挑战。虽然图神经网络(gnn)已被用于改善水力和水质预测,但它们对同质图的依赖过度简化了水力元件的多种作用和相互作用,导致在动态系统状态下性能较低。本研究引入了一种新的异构图神经网络(HGNN)框架,该框架将泵和阀门等控制单元建模为不同的节点,同时通过额外的边缘类型保持它们的相互作用。以C-Town为基准的实验结果表明,在95%掩蔽率下,HGNN在准确率、鲁棒性和适应性方面优于GNN,平均绝对百分比误差(MAPE)为1.88%,平均绝对误差(MAE)为1.70 m。此外,本研究表明,最优传感器放置可使MAE降低高达15%,并且所提出的HGNN框架具有较高的计算效率,突出了其在WDN分析和管理中的有效性。该研究为WDN压力估计提供了一种先进的、可转移的方法,是传统压力评估模型的一种优越选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heterogeneous graph neural networks enhance pressure estimation in water distribution networks

Heterogeneous graph neural networks enhance pressure estimation in water distribution networks
Pressure estimation is crucial for efficient operation and management of water distribution networks (WDNs). However, it is often challenged by limited sensor observations. While graph neural networks (GNNs) have been used to improve hydraulic and water quality predictions of WDNs, their reliance on homogeneous graphs oversimplifies the diverse roles and interactions of hydraulic components, resulting in lower performance under dynamic system states. This research introduces a novel heterogeneous graph neural network (HGNN) framework, which models control units such as pumps and valves as distinct nodes while preserving their interactions through additional edge types. Experimental results using C-Town as a benchmark demonstrate that HGNN outperforms GNN in terms of accuracy, robustness, and adaptability, achieving a mean absolute percentage error (MAPE) of 1.88 % and a mean absolute error (MAE) of 1.70 m under a 95 % masking rate. Additionally, this study shows that optimal sensor placement reduces MAE by up to 15 %, and the proposed HGNN framework achieves high computational efficiency, highlighting its effectiveness in WDN analysis and management. This research offers an advanced and transferable approach for WDN pressure estimation, serving as a superior alternative to traditional pressure evaluation models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信