{"title":"异构图神经网络增强了配水管网的压力估计","authors":"Jian Wang , Li Liu , Dragan Savic , Guangtao Fu","doi":"10.1016/j.watres.2025.123843","DOIUrl":null,"url":null,"abstract":"<div><div>Pressure estimation is crucial for efficient operation and management of water distribution networks (WDNs). However, it is often challenged by limited sensor observations. While graph neural networks (GNNs) have been used to improve hydraulic and water quality predictions of WDNs, their reliance on homogeneous graphs oversimplifies the diverse roles and interactions of hydraulic components, resulting in lower performance under dynamic system states. This research introduces a novel heterogeneous graph neural network (HGNN) framework, which models control units such as pumps and valves as distinct nodes while preserving their interactions through additional edge types. Experimental results using C-Town as a benchmark demonstrate that HGNN outperforms GNN in terms of accuracy, robustness, and adaptability, achieving a mean absolute percentage error (MAPE) of 1.88 % and a mean absolute error (MAE) of 1.70 m under a 95 % masking rate. Additionally, this study shows that optimal sensor placement reduces MAE by up to 15 %, and the proposed HGNN framework achieves high computational efficiency, highlighting its effectiveness in WDN analysis and management. This research offers an advanced and transferable approach for WDN pressure estimation, serving as a superior alternative to traditional pressure evaluation models.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"283 ","pages":"Article 123843"},"PeriodicalIF":11.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous graph neural networks enhance pressure estimation in water distribution networks\",\"authors\":\"Jian Wang , Li Liu , Dragan Savic , Guangtao Fu\",\"doi\":\"10.1016/j.watres.2025.123843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pressure estimation is crucial for efficient operation and management of water distribution networks (WDNs). However, it is often challenged by limited sensor observations. While graph neural networks (GNNs) have been used to improve hydraulic and water quality predictions of WDNs, their reliance on homogeneous graphs oversimplifies the diverse roles and interactions of hydraulic components, resulting in lower performance under dynamic system states. This research introduces a novel heterogeneous graph neural network (HGNN) framework, which models control units such as pumps and valves as distinct nodes while preserving their interactions through additional edge types. Experimental results using C-Town as a benchmark demonstrate that HGNN outperforms GNN in terms of accuracy, robustness, and adaptability, achieving a mean absolute percentage error (MAPE) of 1.88 % and a mean absolute error (MAE) of 1.70 m under a 95 % masking rate. Additionally, this study shows that optimal sensor placement reduces MAE by up to 15 %, and the proposed HGNN framework achieves high computational efficiency, highlighting its effectiveness in WDN analysis and management. This research offers an advanced and transferable approach for WDN pressure estimation, serving as a superior alternative to traditional pressure evaluation models.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"283 \",\"pages\":\"Article 123843\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135425007511\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425007511","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Heterogeneous graph neural networks enhance pressure estimation in water distribution networks
Pressure estimation is crucial for efficient operation and management of water distribution networks (WDNs). However, it is often challenged by limited sensor observations. While graph neural networks (GNNs) have been used to improve hydraulic and water quality predictions of WDNs, their reliance on homogeneous graphs oversimplifies the diverse roles and interactions of hydraulic components, resulting in lower performance under dynamic system states. This research introduces a novel heterogeneous graph neural network (HGNN) framework, which models control units such as pumps and valves as distinct nodes while preserving their interactions through additional edge types. Experimental results using C-Town as a benchmark demonstrate that HGNN outperforms GNN in terms of accuracy, robustness, and adaptability, achieving a mean absolute percentage error (MAPE) of 1.88 % and a mean absolute error (MAE) of 1.70 m under a 95 % masking rate. Additionally, this study shows that optimal sensor placement reduces MAE by up to 15 %, and the proposed HGNN framework achieves high computational efficiency, highlighting its effectiveness in WDN analysis and management. This research offers an advanced and transferable approach for WDN pressure estimation, serving as a superior alternative to traditional pressure evaluation models.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.