因果环树对偶表示中的对称性分析

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Irene Lopez Imaz, German F. R. Sborlini
{"title":"因果环树对偶表示中的对称性分析","authors":"Irene Lopez Imaz, German F. R. Sborlini","doi":"10.1103/physrevd.111.105016","DOIUrl":null,"url":null,"abstract":"Unveiling hidden symmetries within Feynman diagrams is crucial for achieving more efficient computations in high-energy physics. In this paper, we study the symmetries underlying the causal loop-tree duality representations through a graph-theoretic analysis. Focusing on the integrand-level representations of N</a:mi></a:math>-point functions at one loop, we examine their degeneracy and discover that different causal representations are interconnected through specific transformations arising from the symmetries of cut diagrams. Furthermore, the degeneracy is linked to algebraic constraints among the different causal thresholds. Our findings shed new light on the deeper structures of Feynman integrals and pave the way for significantly accelerating their calculation by interrelating different approaches. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"29 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of symmetries in the causal loop-tree duality representations\",\"authors\":\"Irene Lopez Imaz, German F. R. Sborlini\",\"doi\":\"10.1103/physrevd.111.105016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unveiling hidden symmetries within Feynman diagrams is crucial for achieving more efficient computations in high-energy physics. In this paper, we study the symmetries underlying the causal loop-tree duality representations through a graph-theoretic analysis. Focusing on the integrand-level representations of N</a:mi></a:math>-point functions at one loop, we examine their degeneracy and discover that different causal representations are interconnected through specific transformations arising from the symmetries of cut diagrams. Furthermore, the degeneracy is linked to algebraic constraints among the different causal thresholds. Our findings shed new light on the deeper structures of Feynman integrals and pave the way for significantly accelerating their calculation by interrelating different approaches. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.105016\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.105016","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

揭示费曼图中隐藏的对称性对于在高能物理中实现更有效的计算至关重要。本文通过图论分析,研究了因果环树对偶表示的对称性。关注n点函数在一个环上的积分级表示,我们检查了它们的退化性,并发现不同的因果表示通过由切图的对称性引起的特定变换相互关联。此外,退化与不同因果阈值之间的代数约束有关。我们的发现揭示了费曼积分的深层结构,并为通过相互关联的不同方法显著加速其计算铺平了道路。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of symmetries in the causal loop-tree duality representations
Unveiling hidden symmetries within Feynman diagrams is crucial for achieving more efficient computations in high-energy physics. In this paper, we study the symmetries underlying the causal loop-tree duality representations through a graph-theoretic analysis. Focusing on the integrand-level representations of N-point functions at one loop, we examine their degeneracy and discover that different causal representations are interconnected through specific transformations arising from the symmetries of cut diagrams. Furthermore, the degeneracy is linked to algebraic constraints among the different causal thresholds. Our findings shed new light on the deeper structures of Feynman integrals and pave the way for significantly accelerating their calculation by interrelating different approaches. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信