William Stewart , Bin Hu , Fengqiao Li , Jia Huang , Zhixiang Liu , Chenshuang Zhang , Maoping Tang , Xue-Qing Zhang , Xiaoyang Xu
{"title":"靶向脂质纳米颗粒治疗肥胖的siRNA和mRNA组合方法","authors":"William Stewart , Bin Hu , Fengqiao Li , Jia Huang , Zhixiang Liu , Chenshuang Zhang , Maoping Tang , Xue-Qing Zhang , Xiaoyang Xu","doi":"10.1016/j.jconrel.2025.113857","DOIUrl":null,"url":null,"abstract":"<div><div>Obesity, a widespread global health issue affecting millions, is characterized by excess fat deposition and metabolic dysfunction, significantly elevating the risk of comorbidities like type 2 diabetes, cardiovascular disease, and certain cancers, all of which contribute to rising rates of preventable morbidity and mortality. Current approaches to obesity, including lifestyle modifications, and pharmacotherapy, often face limitations such as poor long-term adherence, side effects, and insufficient targeting of the complex, multifactorial pathways underlying the disease. Herein we report a dual, RNA-mediated combinatorial approach using targeting lipid nanoparticles (LNP) for the treatment of obesity. LNPs were co-encapsulated with mRNA encoding Interleukin-27 (<em>mIL-27</em>) to coactivate PGC-1α, PPARα, and UCP-1, thereby promoting adipocyte differentiation and enhancing adaptive thermogenesis within adipocytes, and siRNA targeting Dipeptidyl peptidase-4 (<em>siDPP-4</em>) to silence the primary inhibitory enzyme of GLP-1, and GIP within the incretin system, effectively restoring glucose homeostasis. Following post translational silencing of DPP-4 and upregulation of IL-27 in a diet-induced obesity (DIO) mice model, increased expression of thermogenic biomarkers PGC-1α, PPARα, and UCP-1 was observed at the molecular, protein, and tissue level, and insulin sensitivity was restored. Importantly, this gene modulation led to a 21.1 % reduction of bodyweight after treatment in the DIO model. These findings demonstrate for the first time a dual RNA-mediated combinatorial approach, leveraging liver targeting LNP delivery with synergistic effects from incretin system regulation and induction of adipocyte differentiation and thermogenesis after codelivery of <em>siDPP-4</em> and <em>mIL-27</em>. This innovative strategy provides a promising alternate framework for addressing obesity and its associated metabolic dysfunction.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"383 ","pages":"Article 113857"},"PeriodicalIF":10.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combinatorial siRNA and mRNA approach for obesity treatment using targeting lipid nanoparticles\",\"authors\":\"William Stewart , Bin Hu , Fengqiao Li , Jia Huang , Zhixiang Liu , Chenshuang Zhang , Maoping Tang , Xue-Qing Zhang , Xiaoyang Xu\",\"doi\":\"10.1016/j.jconrel.2025.113857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Obesity, a widespread global health issue affecting millions, is characterized by excess fat deposition and metabolic dysfunction, significantly elevating the risk of comorbidities like type 2 diabetes, cardiovascular disease, and certain cancers, all of which contribute to rising rates of preventable morbidity and mortality. Current approaches to obesity, including lifestyle modifications, and pharmacotherapy, often face limitations such as poor long-term adherence, side effects, and insufficient targeting of the complex, multifactorial pathways underlying the disease. Herein we report a dual, RNA-mediated combinatorial approach using targeting lipid nanoparticles (LNP) for the treatment of obesity. LNPs were co-encapsulated with mRNA encoding Interleukin-27 (<em>mIL-27</em>) to coactivate PGC-1α, PPARα, and UCP-1, thereby promoting adipocyte differentiation and enhancing adaptive thermogenesis within adipocytes, and siRNA targeting Dipeptidyl peptidase-4 (<em>siDPP-4</em>) to silence the primary inhibitory enzyme of GLP-1, and GIP within the incretin system, effectively restoring glucose homeostasis. Following post translational silencing of DPP-4 and upregulation of IL-27 in a diet-induced obesity (DIO) mice model, increased expression of thermogenic biomarkers PGC-1α, PPARα, and UCP-1 was observed at the molecular, protein, and tissue level, and insulin sensitivity was restored. Importantly, this gene modulation led to a 21.1 % reduction of bodyweight after treatment in the DIO model. These findings demonstrate for the first time a dual RNA-mediated combinatorial approach, leveraging liver targeting LNP delivery with synergistic effects from incretin system regulation and induction of adipocyte differentiation and thermogenesis after codelivery of <em>siDPP-4</em> and <em>mIL-27</em>. This innovative strategy provides a promising alternate framework for addressing obesity and its associated metabolic dysfunction.</div></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":\"383 \",\"pages\":\"Article 113857\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168365925004778\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925004778","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A combinatorial siRNA and mRNA approach for obesity treatment using targeting lipid nanoparticles
Obesity, a widespread global health issue affecting millions, is characterized by excess fat deposition and metabolic dysfunction, significantly elevating the risk of comorbidities like type 2 diabetes, cardiovascular disease, and certain cancers, all of which contribute to rising rates of preventable morbidity and mortality. Current approaches to obesity, including lifestyle modifications, and pharmacotherapy, often face limitations such as poor long-term adherence, side effects, and insufficient targeting of the complex, multifactorial pathways underlying the disease. Herein we report a dual, RNA-mediated combinatorial approach using targeting lipid nanoparticles (LNP) for the treatment of obesity. LNPs were co-encapsulated with mRNA encoding Interleukin-27 (mIL-27) to coactivate PGC-1α, PPARα, and UCP-1, thereby promoting adipocyte differentiation and enhancing adaptive thermogenesis within adipocytes, and siRNA targeting Dipeptidyl peptidase-4 (siDPP-4) to silence the primary inhibitory enzyme of GLP-1, and GIP within the incretin system, effectively restoring glucose homeostasis. Following post translational silencing of DPP-4 and upregulation of IL-27 in a diet-induced obesity (DIO) mice model, increased expression of thermogenic biomarkers PGC-1α, PPARα, and UCP-1 was observed at the molecular, protein, and tissue level, and insulin sensitivity was restored. Importantly, this gene modulation led to a 21.1 % reduction of bodyweight after treatment in the DIO model. These findings demonstrate for the first time a dual RNA-mediated combinatorial approach, leveraging liver targeting LNP delivery with synergistic effects from incretin system regulation and induction of adipocyte differentiation and thermogenesis after codelivery of siDPP-4 and mIL-27. This innovative strategy provides a promising alternate framework for addressing obesity and its associated metabolic dysfunction.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.