学习非局部动力学对稳定数据驱动气候模型的重要性:一维重力波qbo试验台

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Hamid A. Pahlavan, Pedram Hassanzadeh, M. Joan Alexander
{"title":"学习非局部动力学对稳定数据驱动气候模型的重要性:一维重力波qbo试验台","authors":"Hamid A. Pahlavan,&nbsp;Pedram Hassanzadeh,&nbsp;M. Joan Alexander","doi":"10.1029/2024GL114136","DOIUrl":null,"url":null,"abstract":"<p>Model instability remains a core challenge for data-driven parameterizations, especially those developed with supervised algorithms, and rigorous methods to address it are lacking. Here, by integrating machine learning (ML) theory with climate physics, we demonstrate the importance of learning spatially <i>non-local</i> dynamics using a 1D quasi-biennial oscillation model with parameterized gravity waves (GW) as a testbed. While common offline metrics fail to identify shortcomings in learning non-local dynamics, we show that the receptive field (RF) can identify instability a-priori. We find that neural network-based parameterizations, though predicting GW forcings from wind profiles with 99% accuracy, lead to unstable simulations when RFs are too small to capture non-local dynamics. Additionally, we demonstrate that learning non-local dynamics is crucial for the stability of a data-driven spatiotemporal <i>emulator</i> of the zonal wind field. This work underscores the need to integrate ML theory with physics in designing data-driven algorithms for climate modeling.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 10","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114136","citationCount":"0","resultStr":"{\"title\":\"On the Importance of Learning Non-Local Dynamics for Stable Data-Driven Climate Modeling: A 1D Gravity Wave-QBO Testbed\",\"authors\":\"Hamid A. Pahlavan,&nbsp;Pedram Hassanzadeh,&nbsp;M. Joan Alexander\",\"doi\":\"10.1029/2024GL114136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Model instability remains a core challenge for data-driven parameterizations, especially those developed with supervised algorithms, and rigorous methods to address it are lacking. Here, by integrating machine learning (ML) theory with climate physics, we demonstrate the importance of learning spatially <i>non-local</i> dynamics using a 1D quasi-biennial oscillation model with parameterized gravity waves (GW) as a testbed. While common offline metrics fail to identify shortcomings in learning non-local dynamics, we show that the receptive field (RF) can identify instability a-priori. We find that neural network-based parameterizations, though predicting GW forcings from wind profiles with 99% accuracy, lead to unstable simulations when RFs are too small to capture non-local dynamics. Additionally, we demonstrate that learning non-local dynamics is crucial for the stability of a data-driven spatiotemporal <i>emulator</i> of the zonal wind field. This work underscores the need to integrate ML theory with physics in designing data-driven algorithms for climate modeling.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 10\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114136\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114136\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114136","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

模型不稳定性仍然是数据驱动参数化的核心挑战,特别是那些使用监督算法开发的模型,并且缺乏严格的方法来解决它。本文通过将机器学习(ML)理论与气候物理学相结合,以参数化重力波(GW)为实验平台,利用一维准两年振荡模型证明了学习空间非局部动力学的重要性。虽然常见的离线指标不能识别学习非局部动态的缺点,但我们表明,感受野(RF)可以识别先验的不稳定性。我们发现,尽管基于神经网络的参数化预测风廓线的GW强迫的准确率为99%,但当RFs太小而无法捕获非局部动力学时,会导致模拟不稳定。此外,我们证明了学习非局部动力学对于数据驱动的纬向风场时空模拟器的稳定性至关重要。这项工作强调了在设计数据驱动的气候建模算法时将ML理论与物理学相结合的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Importance of Learning Non-Local Dynamics for Stable Data-Driven Climate Modeling: A 1D Gravity Wave-QBO Testbed

Model instability remains a core challenge for data-driven parameterizations, especially those developed with supervised algorithms, and rigorous methods to address it are lacking. Here, by integrating machine learning (ML) theory with climate physics, we demonstrate the importance of learning spatially non-local dynamics using a 1D quasi-biennial oscillation model with parameterized gravity waves (GW) as a testbed. While common offline metrics fail to identify shortcomings in learning non-local dynamics, we show that the receptive field (RF) can identify instability a-priori. We find that neural network-based parameterizations, though predicting GW forcings from wind profiles with 99% accuracy, lead to unstable simulations when RFs are too small to capture non-local dynamics. Additionally, we demonstrate that learning non-local dynamics is crucial for the stability of a data-driven spatiotemporal emulator of the zonal wind field. This work underscores the need to integrate ML theory with physics in designing data-driven algorithms for climate modeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信