全固态电池用li3incl6基复合阴极的电子传递与界面演化可视化

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Rui Li, Yanpei Fan, Xiaotong Liu, Jiewen Li, Haodong Zhang, Lin Lin, Zhenbin Wang, Bohua Wen
{"title":"全固态电池用li3incl6基复合阴极的电子传递与界面演化可视化","authors":"Rui Li, Yanpei Fan, Xiaotong Liu, Jiewen Li, Haodong Zhang, Lin Lin, Zhenbin Wang, Bohua Wen","doi":"10.1021/acsenergylett.5c00174","DOIUrl":null,"url":null,"abstract":"All-solid-state batteries (ASSBs) promise higher energy density and improved safety, but stable solid electrolyte-electrode interfaces remain a key challenge. Mixed ionic-electronic conducting interphases cause degradation, limiting the cathode lifetime. Here, we employ <i>operando</i> electrochemical atomic force microscopy based on modified Kelvin probe force microscopy to visualize nanoscale electron transport and dynamic evolution of the composite cathode interface. By analyzing the contact current (<i>I</i><sub>c</sub>) distribution, we distinguish the interfacial stability of Li<sub>3</sub>InCl<sub>6</sub> (LIC)-based cathodes with LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>, both coated and uncoated with LiNbO<sub>3</sub>, and conductive carbon additives. <i>Operando</i> studies, combined with interfacial mechanical property mapping, reveal that the <i>I</i><sub>c</sub> heterogeneity and magnitude critically influence degradation. In LIC-based cathodes, decomposed organic interphases enhance electron transport, driving the formation of high-modulus inorganic species that accelerate LIC breakdown. These findings link microscopic electron transport and interface evolution to electrochemical performance, offering insights for designing stable interphases to advance ASSB technology.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"30 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualizing Electron Transport and Interface Evolution of Li3InCl6-Based Composite Cathode for All-Solid-State Batteries\",\"authors\":\"Rui Li, Yanpei Fan, Xiaotong Liu, Jiewen Li, Haodong Zhang, Lin Lin, Zhenbin Wang, Bohua Wen\",\"doi\":\"10.1021/acsenergylett.5c00174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-solid-state batteries (ASSBs) promise higher energy density and improved safety, but stable solid electrolyte-electrode interfaces remain a key challenge. Mixed ionic-electronic conducting interphases cause degradation, limiting the cathode lifetime. Here, we employ <i>operando</i> electrochemical atomic force microscopy based on modified Kelvin probe force microscopy to visualize nanoscale electron transport and dynamic evolution of the composite cathode interface. By analyzing the contact current (<i>I</i><sub>c</sub>) distribution, we distinguish the interfacial stability of Li<sub>3</sub>InCl<sub>6</sub> (LIC)-based cathodes with LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>, both coated and uncoated with LiNbO<sub>3</sub>, and conductive carbon additives. <i>Operando</i> studies, combined with interfacial mechanical property mapping, reveal that the <i>I</i><sub>c</sub> heterogeneity and magnitude critically influence degradation. In LIC-based cathodes, decomposed organic interphases enhance electron transport, driving the formation of high-modulus inorganic species that accelerate LIC breakdown. These findings link microscopic electron transport and interface evolution to electrochemical performance, offering insights for designing stable interphases to advance ASSB technology.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.5c00174\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00174","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

全固态电池(assb)有望提高能量密度和安全性,但稳定的固体电解质-电极界面仍然是一个关键挑战。混合离子-电子导电界面会导致降解,限制了阴极的寿命。在此,我们采用基于改良开尔文探针力显微镜的operando电化学原子力显微镜来观察复合阴极界面的纳米级电子传递和动态演化。通过分析接触电流(Ic)分布,我们区分了涂覆和未涂覆LiNbO3以及导电碳添加剂的Li3InCl6 (LIC)基阴极的界面稳定性。Operando研究结合界面力学性质映射,揭示了Ic的非均质性和大小对降解有重要影响。在基于LIC的阴极中,分解的有机界面相增强了电子传递,驱动高模量无机物质的形成,加速了LIC的分解。这些发现将微观电子传递和界面演变与电化学性能联系起来,为设计稳定的界面以推进ASSB技术提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Visualizing Electron Transport and Interface Evolution of Li3InCl6-Based Composite Cathode for All-Solid-State Batteries

Visualizing Electron Transport and Interface Evolution of Li3InCl6-Based Composite Cathode for All-Solid-State Batteries
All-solid-state batteries (ASSBs) promise higher energy density and improved safety, but stable solid electrolyte-electrode interfaces remain a key challenge. Mixed ionic-electronic conducting interphases cause degradation, limiting the cathode lifetime. Here, we employ operando electrochemical atomic force microscopy based on modified Kelvin probe force microscopy to visualize nanoscale electron transport and dynamic evolution of the composite cathode interface. By analyzing the contact current (Ic) distribution, we distinguish the interfacial stability of Li3InCl6 (LIC)-based cathodes with LiNi0.8Mn0.1Co0.1O2, both coated and uncoated with LiNbO3, and conductive carbon additives. Operando studies, combined with interfacial mechanical property mapping, reveal that the Ic heterogeneity and magnitude critically influence degradation. In LIC-based cathodes, decomposed organic interphases enhance electron transport, driving the formation of high-modulus inorganic species that accelerate LIC breakdown. These findings link microscopic electron transport and interface evolution to electrochemical performance, offering insights for designing stable interphases to advance ASSB technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信