稀mnbi2te4合金化可实现高性能GeTe热电器件

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Dan Zhang, Hongli Wang, Jiandong Liu, Manzhe Zhao, Guannan Liu, Junyou Yang, Yubo Luo, Shufang Wang
{"title":"稀mnbi2te4合金化可实现高性能GeTe热电器件","authors":"Dan Zhang, Hongli Wang, Jiandong Liu, Manzhe Zhao, Guannan Liu, Junyou Yang, Yubo Luo, Shufang Wang","doi":"10.1063/5.0267606","DOIUrl":null,"url":null,"abstract":"As an attractive lead-free thermoelectric material, GeTe has gained widespread interest. However, the extremely high hole concentration seriously limits the thermoelectric performance of pristine GeTe. In this work, dilute MnBi2Te4-alloying is utilized to synergically optimize electrical- and thermal-transport properties of GeTe for thermoelectric performance improvement. It can not only decrease the precipitation of Ge to optimize carrier concentration, but also promote multi-band convergence to enlarge the density of state effective mass. Furthermore, the MnBi2Te4-alloyed samples also maintain a moderate carrier mobility. In addition, the increased point-defect scattering for phonons leads to the significant reduction in lattice thermal conductivity. Consequently, a high peak thermoelectric figure of merit (ZT) of ∼1.8 at 723 K and a large average ZT of ∼1.0 from 300 to 723 K are achieved in 4% MnBi2Te4-alloyed GeTe, showing the potential of dilute compound alloying to enhance the thermoelectric performance of GeTe by the concurrent regulation of electrical- and thermal-transport properties.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"120 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dilute MnBi2Te4-alloying enables high-performance GeTe thermoelectrics\",\"authors\":\"Dan Zhang, Hongli Wang, Jiandong Liu, Manzhe Zhao, Guannan Liu, Junyou Yang, Yubo Luo, Shufang Wang\",\"doi\":\"10.1063/5.0267606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an attractive lead-free thermoelectric material, GeTe has gained widespread interest. However, the extremely high hole concentration seriously limits the thermoelectric performance of pristine GeTe. In this work, dilute MnBi2Te4-alloying is utilized to synergically optimize electrical- and thermal-transport properties of GeTe for thermoelectric performance improvement. It can not only decrease the precipitation of Ge to optimize carrier concentration, but also promote multi-band convergence to enlarge the density of state effective mass. Furthermore, the MnBi2Te4-alloyed samples also maintain a moderate carrier mobility. In addition, the increased point-defect scattering for phonons leads to the significant reduction in lattice thermal conductivity. Consequently, a high peak thermoelectric figure of merit (ZT) of ∼1.8 at 723 K and a large average ZT of ∼1.0 from 300 to 723 K are achieved in 4% MnBi2Te4-alloyed GeTe, showing the potential of dilute compound alloying to enhance the thermoelectric performance of GeTe by the concurrent regulation of electrical- and thermal-transport properties.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0267606\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0267606","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

GeTe作为一种极具吸引力的无铅热电材料,受到了广泛的关注。然而,极高的空穴浓度严重限制了原始GeTe的热电性能。在这项工作中,稀化mnbi2te4合金用于协同优化GeTe的电输运和热输运性能,以提高热电性能。它不仅可以减少锗的析出以优化载流子浓度,而且可以促进多带收敛以增大态有效质量的密度。此外,mnbi2te4合金样品也保持了适度的载流子迁移率。此外,声子点缺陷散射的增加导致晶格导热系数的显著降低。因此,在723 K时,4% mnbi2te4合金GeTe的峰值热电性能(ZT)达到1.8,在300至723 K时,平均ZT达到1.0,表明稀化合物合金化可以通过同时调节电学和热输运性质来提高GeTe的热电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dilute MnBi2Te4-alloying enables high-performance GeTe thermoelectrics
As an attractive lead-free thermoelectric material, GeTe has gained widespread interest. However, the extremely high hole concentration seriously limits the thermoelectric performance of pristine GeTe. In this work, dilute MnBi2Te4-alloying is utilized to synergically optimize electrical- and thermal-transport properties of GeTe for thermoelectric performance improvement. It can not only decrease the precipitation of Ge to optimize carrier concentration, but also promote multi-band convergence to enlarge the density of state effective mass. Furthermore, the MnBi2Te4-alloyed samples also maintain a moderate carrier mobility. In addition, the increased point-defect scattering for phonons leads to the significant reduction in lattice thermal conductivity. Consequently, a high peak thermoelectric figure of merit (ZT) of ∼1.8 at 723 K and a large average ZT of ∼1.0 from 300 to 723 K are achieved in 4% MnBi2Te4-alloyed GeTe, showing the potential of dilute compound alloying to enhance the thermoelectric performance of GeTe by the concurrent regulation of electrical- and thermal-transport properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信