Dr. Guang-Rui Si, Dr. Xiang-Jing Kong, Prof. Tao He, Jia-Teng Zhao, Prof. Lin-Hua Xie, Prof. Jian-Rong Li
{"title":"氨水合作用于Cu(II)‐吡唑酸酯框架的高效痕量捕获","authors":"Dr. Guang-Rui Si, Dr. Xiang-Jing Kong, Prof. Tao He, Jia-Teng Zhao, Prof. Lin-Hua Xie, Prof. Jian-Rong Li","doi":"10.1002/anie.202507356","DOIUrl":null,"url":null,"abstract":"<p>Ammonia (NH<sub>3</sub>) emissions from industrial and agricultural activities pose severe environmental and health issues. Trace NH<sub>3</sub> capture typically relies on chemisorption at Lewis acid sites or physisorption on porous adsorbents but usually suffers from irreversible binding, energy-intensive regeneration, and structural degradation. In this work, for the first time, we demonstrate a new hydration pathway as a promising solution. In a Cu(II)-pyrazolate framework, BUT-64(H<sub>2</sub>O), the bridging water molecules between adjacent Cu(II) ions serve as Brønsted acid sites to hydrate ammonia, achieving a remarkable NH<sub>3</sub> packing density of 0.27 g cm<sup>−3</sup> at 0.1 kPa and an adsorption capacity of 1.51 mmol g<sup>−1</sup> for 1000 ppm NH<sub>3</sub> under 80% relative humidity, among the leading adsorbents. The reversible hydration mechanism combines enhanced NH<sub>3</sub> affinity with facile regeneration and mitigated moisture co-adsorption, overcoming the inherent trade-off. The remarkable alkaline stability of this material also highlights its potential as an energy-efficient sorbent for trace NH<sub>3</sub> capture.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 29","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ammonia Hydration in a Cu(II)-Pyrazolate Framework for Efficient Trace Capture\",\"authors\":\"Dr. Guang-Rui Si, Dr. Xiang-Jing Kong, Prof. Tao He, Jia-Teng Zhao, Prof. Lin-Hua Xie, Prof. Jian-Rong Li\",\"doi\":\"10.1002/anie.202507356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ammonia (NH<sub>3</sub>) emissions from industrial and agricultural activities pose severe environmental and health issues. Trace NH<sub>3</sub> capture typically relies on chemisorption at Lewis acid sites or physisorption on porous adsorbents but usually suffers from irreversible binding, energy-intensive regeneration, and structural degradation. In this work, for the first time, we demonstrate a new hydration pathway as a promising solution. In a Cu(II)-pyrazolate framework, BUT-64(H<sub>2</sub>O), the bridging water molecules between adjacent Cu(II) ions serve as Brønsted acid sites to hydrate ammonia, achieving a remarkable NH<sub>3</sub> packing density of 0.27 g cm<sup>−3</sup> at 0.1 kPa and an adsorption capacity of 1.51 mmol g<sup>−1</sup> for 1000 ppm NH<sub>3</sub> under 80% relative humidity, among the leading adsorbents. The reversible hydration mechanism combines enhanced NH<sub>3</sub> affinity with facile regeneration and mitigated moisture co-adsorption, overcoming the inherent trade-off. The remarkable alkaline stability of this material also highlights its potential as an energy-efficient sorbent for trace NH<sub>3</sub> capture.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 29\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507356\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507356","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
工业和农业活动产生的氨(NH3)排放构成严重的环境和健康问题。微量NH3的捕获通常依赖于Lewis酸位点的化学吸附或多孔吸附剂的物理吸附,但通常遭受不可逆结合,能量密集型再生和结构降解。在这项工作中,我们首次展示了一种新的水化途径作为一种有前途的解决方案。在Cu(II)‐吡唑酸酯骨架BUT‐64(H2O)中,相邻Cu(II)离子之间的桥接水分子作为br - nsted酸位点对氨进行水化,在0.1 kPa下NH3的填充密度为0.27 g cm-3,在80%相对湿度下对1000 ppm NH3的吸附量为1.51 mmol g - 1,是领先的吸附剂之一。可逆水化机制结合了增强的NH3亲和力和易于再生,减轻了水分的共吸附,克服了固有的权衡。这种材料的显著碱性稳定性也突出了其作为捕获微量NH3的节能吸附剂的潜力。
Ammonia Hydration in a Cu(II)-Pyrazolate Framework for Efficient Trace Capture
Ammonia (NH3) emissions from industrial and agricultural activities pose severe environmental and health issues. Trace NH3 capture typically relies on chemisorption at Lewis acid sites or physisorption on porous adsorbents but usually suffers from irreversible binding, energy-intensive regeneration, and structural degradation. In this work, for the first time, we demonstrate a new hydration pathway as a promising solution. In a Cu(II)-pyrazolate framework, BUT-64(H2O), the bridging water molecules between adjacent Cu(II) ions serve as Brønsted acid sites to hydrate ammonia, achieving a remarkable NH3 packing density of 0.27 g cm−3 at 0.1 kPa and an adsorption capacity of 1.51 mmol g−1 for 1000 ppm NH3 under 80% relative humidity, among the leading adsorbents. The reversible hydration mechanism combines enhanced NH3 affinity with facile regeneration and mitigated moisture co-adsorption, overcoming the inherent trade-off. The remarkable alkaline stability of this material also highlights its potential as an energy-efficient sorbent for trace NH3 capture.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.