深度学习开发了可拉伸电容式光电探测器的多光源识别能力

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Su Bin Choi, Jun Sang Choi, Hyun Sik Shin, Jeong-Won Yoon, Youngmin Kim, Jong-Woong Kim
{"title":"深度学习开发了可拉伸电容式光电探测器的多光源识别能力","authors":"Su Bin Choi, Jun Sang Choi, Hyun Sik Shin, Jeong-Won Yoon, Youngmin Kim, Jong-Woong Kim","doi":"10.1038/s41528-025-00400-z","DOIUrl":null,"url":null,"abstract":"<p>We introduce a novel stretchable photodetector with enhanced multi-light source detection, capable of discriminating light sources using artificial intelligence (AI). These features highlight the application potential of deep learning enhanced photodetectors in applications that require accurate for visual light communication (VLC). Experimental results showcased its excellent potential in real-world traffic system. This photodetector, fabricated using a composite structure of silver nanowires (AgNWs)/zinc sulfide (ZnS)-polyurethane acrylate (PUA)/AgNWs, maintained stable performance under 25% tensile strain and 2 mm bending radius. It shows high sensitivity at both 448 and 505 nm wavelengths, detecting light sources under mechanical deformations, different wavelengths and frequencies. By integrating a one-dimensional convolutional neural network (1D-CNN) model, we classified the light source power level with 96.52% accuracy even the light of two wavelengths is mixed. The model’s performance remains consistent across flat, bent, and stretched states, setting a precedent for flexible electronics combined with AI in dynamic environments.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"30 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-developed multi-light source discrimination capability of stretchable capacitive photodetector\",\"authors\":\"Su Bin Choi, Jun Sang Choi, Hyun Sik Shin, Jeong-Won Yoon, Youngmin Kim, Jong-Woong Kim\",\"doi\":\"10.1038/s41528-025-00400-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a novel stretchable photodetector with enhanced multi-light source detection, capable of discriminating light sources using artificial intelligence (AI). These features highlight the application potential of deep learning enhanced photodetectors in applications that require accurate for visual light communication (VLC). Experimental results showcased its excellent potential in real-world traffic system. This photodetector, fabricated using a composite structure of silver nanowires (AgNWs)/zinc sulfide (ZnS)-polyurethane acrylate (PUA)/AgNWs, maintained stable performance under 25% tensile strain and 2 mm bending radius. It shows high sensitivity at both 448 and 505 nm wavelengths, detecting light sources under mechanical deformations, different wavelengths and frequencies. By integrating a one-dimensional convolutional neural network (1D-CNN) model, we classified the light source power level with 96.52% accuracy even the light of two wavelengths is mixed. The model’s performance remains consistent across flat, bent, and stretched states, setting a precedent for flexible electronics combined with AI in dynamic environments.</p>\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41528-025-00400-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00400-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种新型的可拉伸光电探测器,具有增强的多光源检测功能,能够使用人工智能(AI)区分光源。这些特点突出了深度学习增强型光电探测器在需要精确视觉光通信(VLC)的应用中的应用潜力。实验结果表明,该方法在现实交通系统中具有良好的应用潜力。该光电探测器采用银纳米线(AgNWs)/硫化锌(ZnS)-聚氨酯丙烯酸酯(PUA)/AgNWs复合结构制成,在25%拉伸应变和2mm弯曲半径下保持稳定的性能。它在448 nm和505 nm波长下都具有很高的灵敏度,可以检测机械变形、不同波长和频率下的光源。通过整合一维卷积神经网络(1D-CNN)模型,在两种波长的光混合的情况下,对光源功率等级进行分类,准确率达到96.52%。该模型在平面、弯曲和拉伸状态下的性能保持一致,为动态环境中柔性电子产品与人工智能的结合开创了先例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning-developed multi-light source discrimination capability of stretchable capacitive photodetector

Deep learning-developed multi-light source discrimination capability of stretchable capacitive photodetector

We introduce a novel stretchable photodetector with enhanced multi-light source detection, capable of discriminating light sources using artificial intelligence (AI). These features highlight the application potential of deep learning enhanced photodetectors in applications that require accurate for visual light communication (VLC). Experimental results showcased its excellent potential in real-world traffic system. This photodetector, fabricated using a composite structure of silver nanowires (AgNWs)/zinc sulfide (ZnS)-polyurethane acrylate (PUA)/AgNWs, maintained stable performance under 25% tensile strain and 2 mm bending radius. It shows high sensitivity at both 448 and 505 nm wavelengths, detecting light sources under mechanical deformations, different wavelengths and frequencies. By integrating a one-dimensional convolutional neural network (1D-CNN) model, we classified the light source power level with 96.52% accuracy even the light of two wavelengths is mixed. The model’s performance remains consistent across flat, bent, and stretched states, setting a precedent for flexible electronics combined with AI in dynamic environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信