Songyue Chen, Xiujun Fan, Zhaoqi Duan, Yang Luo, Jun Chen
{"title":"磁性可编程介孔纳米反应器","authors":"Songyue Chen, Xiujun Fan, Zhaoqi Duan, Yang Luo, Jun Chen","doi":"10.1038/s41565-025-01910-7","DOIUrl":null,"url":null,"abstract":"Engineering magnetic nanoparticles at the single-particle level advances nanoreactor design, enabling enhanced active sensing, targeted therapy, and catalytic activity, with broad implications for nano energy and nanomedicine applications.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"42 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A magnetically programmable mesoporous nanoreactor\",\"authors\":\"Songyue Chen, Xiujun Fan, Zhaoqi Duan, Yang Luo, Jun Chen\",\"doi\":\"10.1038/s41565-025-01910-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering magnetic nanoparticles at the single-particle level advances nanoreactor design, enabling enhanced active sensing, targeted therapy, and catalytic activity, with broad implications for nano energy and nanomedicine applications.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01910-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01910-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A magnetically programmable mesoporous nanoreactor
Engineering magnetic nanoparticles at the single-particle level advances nanoreactor design, enabling enhanced active sensing, targeted therapy, and catalytic activity, with broad implications for nano energy and nanomedicine applications.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.