当生活变得复杂

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Mark Buchanan
{"title":"当生活变得复杂","authors":"Mark Buchanan","doi":"10.1038/s41567-025-02905-w","DOIUrl":null,"url":null,"abstract":"<p>Without this singular evolutionary event, it seems, the rich history of animals, land plants, and most fungi would not have been possible. But is evolutionary history really so accidental? If this event had not happened, would there truly be no multicellular life today?</p><p>It is fair to say that we still do not have definitive answers to these questions. But an intriguing possibility has emerged from recent research. Some scientists argue, based on quantitative evidence from molecular biology, that before the emergence of the eukaryotic cell, protein-based genetic regulation may have already reached a limit (E. M. Muro et al., <i>PNAS</i> <b>122</b>, e2422968122; 2025). The increase in cellular complexity allowed by the cell nucleus was both required for and enabled by a new and more sophisticated set of gene regulation mechanisms, associated with regions of genes that do not code for proteins.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"15 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When life got complex\",\"authors\":\"Mark Buchanan\",\"doi\":\"10.1038/s41567-025-02905-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Without this singular evolutionary event, it seems, the rich history of animals, land plants, and most fungi would not have been possible. But is evolutionary history really so accidental? If this event had not happened, would there truly be no multicellular life today?</p><p>It is fair to say that we still do not have definitive answers to these questions. But an intriguing possibility has emerged from recent research. Some scientists argue, based on quantitative evidence from molecular biology, that before the emergence of the eukaryotic cell, protein-based genetic regulation may have already reached a limit (E. M. Muro et al., <i>PNAS</i> <b>122</b>, e2422968122; 2025). The increase in cellular complexity allowed by the cell nucleus was both required for and enabled by a new and more sophisticated set of gene regulation mechanisms, associated with regions of genes that do not code for proteins.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-02905-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02905-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

如果没有这一独特的进化事件,似乎就不可能有动物、陆地植物和大多数真菌的丰富历史。但是,进化史真的如此偶然吗?如果这一事件没有发生,今天真的不会有多细胞生命吗?公平地说,我们对这些问题仍然没有明确的答案。但最近的研究发现了一种有趣的可能性。一些科学家认为,基于分子生物学的定量证据,在真核细胞出现之前,基于蛋白质的遗传调控可能已经达到了极限(E. M. Muro et al., PNAS 122, e2422968122;2025)。细胞核所允许的细胞复杂性的增加,既是一套新的、更复杂的基因调控机制所需要的,也是一套新的、更复杂的基因调控机制所促成的,这些机制与不编码蛋白质的基因区域有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
When life got complex

Without this singular evolutionary event, it seems, the rich history of animals, land plants, and most fungi would not have been possible. But is evolutionary history really so accidental? If this event had not happened, would there truly be no multicellular life today?

It is fair to say that we still do not have definitive answers to these questions. But an intriguing possibility has emerged from recent research. Some scientists argue, based on quantitative evidence from molecular biology, that before the emergence of the eukaryotic cell, protein-based genetic regulation may have already reached a limit (E. M. Muro et al., PNAS 122, e2422968122; 2025). The increase in cellular complexity allowed by the cell nucleus was both required for and enabled by a new and more sophisticated set of gene regulation mechanisms, associated with regions of genes that do not code for proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信