Anaïs N. Vignon, Gaëlle Dudon, Giulia Oliva, Steeve Thirard, Ugo Alenda, Agathe Brugoux, Chantal Cazevieille, Jacques Imbert, Camille Bellières, Sylvain Lehmann, Carole Crozet, Joan Torrent, Federica Bertaso, Julie Le Merrer, Jérôme A.J. Becker, Véronique Perrier
{"title":"终身接触聚苯乙烯-纳米塑料可诱导小鼠出现注意力缺陷多动障碍样表型并损害大脑衰老","authors":"Anaïs N. Vignon, Gaëlle Dudon, Giulia Oliva, Steeve Thirard, Ugo Alenda, Agathe Brugoux, Chantal Cazevieille, Jacques Imbert, Camille Bellières, Sylvain Lehmann, Carole Crozet, Joan Torrent, Federica Bertaso, Julie Le Merrer, Jérôme A.J. Becker, Véronique Perrier","doi":"10.1016/j.jhazmat.2025.138640","DOIUrl":null,"url":null,"abstract":"The accumulation of plastic waste in the environment, breaking down into micro- and nanoplastics, poses significant threats to ecosystem and human health. Plastic particles have been detected in human blood, urine, and placental tissue, indicating widespread exposure. While their long-term health impacts remain unclear, developing brains, especially in fetuses and children, may be vulnerable, potentially resulting in behavioral changes or neurodevelopmental disorders. This study explores the effects of chronic exposure to 23-nm polystyrene nanoplastics at 10<!-- --> <!-- -->µg/day/kg in wild-type mice across life stages, using exposure levels reflective of human reality. Maternal exposure disrupted critical developmental milestones in pups. In adulthood, exposed mice exhibited Attention-Deficit Hyperactivity Disorder (ADHD)-like traits, including hyperactivity, increased risk-taking behaviors, and impaired motor learning and executive functions. In aging mice, exposure was associated with a lower epileptic threshold, with developing seizures. These behavioral changes were linked to altered gene and synaptic protein expression associated with ADHD and epilepsy. At the cellular level, lifelong nanoplastic exposure caused lysosomal dysfunctions and increased lipofuscin accumulation, indicative of accelerated brain aging. These findings align with the growing prevalence of ADHD and epilepsy in humans, particularly children and the elderly, emphasizing the urgent need to address plastic pollution and its health implications.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"15 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifelong Exposure to Polystyrene-Nanoplastics Induces an Attention-Deficit Hyperactivity Disorder-like Phenotype and Impairs Brain Aging in Mice\",\"authors\":\"Anaïs N. Vignon, Gaëlle Dudon, Giulia Oliva, Steeve Thirard, Ugo Alenda, Agathe Brugoux, Chantal Cazevieille, Jacques Imbert, Camille Bellières, Sylvain Lehmann, Carole Crozet, Joan Torrent, Federica Bertaso, Julie Le Merrer, Jérôme A.J. Becker, Véronique Perrier\",\"doi\":\"10.1016/j.jhazmat.2025.138640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accumulation of plastic waste in the environment, breaking down into micro- and nanoplastics, poses significant threats to ecosystem and human health. Plastic particles have been detected in human blood, urine, and placental tissue, indicating widespread exposure. While their long-term health impacts remain unclear, developing brains, especially in fetuses and children, may be vulnerable, potentially resulting in behavioral changes or neurodevelopmental disorders. This study explores the effects of chronic exposure to 23-nm polystyrene nanoplastics at 10<!-- --> <!-- -->µg/day/kg in wild-type mice across life stages, using exposure levels reflective of human reality. Maternal exposure disrupted critical developmental milestones in pups. In adulthood, exposed mice exhibited Attention-Deficit Hyperactivity Disorder (ADHD)-like traits, including hyperactivity, increased risk-taking behaviors, and impaired motor learning and executive functions. In aging mice, exposure was associated with a lower epileptic threshold, with developing seizures. These behavioral changes were linked to altered gene and synaptic protein expression associated with ADHD and epilepsy. At the cellular level, lifelong nanoplastic exposure caused lysosomal dysfunctions and increased lipofuscin accumulation, indicative of accelerated brain aging. These findings align with the growing prevalence of ADHD and epilepsy in humans, particularly children and the elderly, emphasizing the urgent need to address plastic pollution and its health implications.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.138640\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138640","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Lifelong Exposure to Polystyrene-Nanoplastics Induces an Attention-Deficit Hyperactivity Disorder-like Phenotype and Impairs Brain Aging in Mice
The accumulation of plastic waste in the environment, breaking down into micro- and nanoplastics, poses significant threats to ecosystem and human health. Plastic particles have been detected in human blood, urine, and placental tissue, indicating widespread exposure. While their long-term health impacts remain unclear, developing brains, especially in fetuses and children, may be vulnerable, potentially resulting in behavioral changes or neurodevelopmental disorders. This study explores the effects of chronic exposure to 23-nm polystyrene nanoplastics at 10 µg/day/kg in wild-type mice across life stages, using exposure levels reflective of human reality. Maternal exposure disrupted critical developmental milestones in pups. In adulthood, exposed mice exhibited Attention-Deficit Hyperactivity Disorder (ADHD)-like traits, including hyperactivity, increased risk-taking behaviors, and impaired motor learning and executive functions. In aging mice, exposure was associated with a lower epileptic threshold, with developing seizures. These behavioral changes were linked to altered gene and synaptic protein expression associated with ADHD and epilepsy. At the cellular level, lifelong nanoplastic exposure caused lysosomal dysfunctions and increased lipofuscin accumulation, indicative of accelerated brain aging. These findings align with the growing prevalence of ADHD and epilepsy in humans, particularly children and the elderly, emphasizing the urgent need to address plastic pollution and its health implications.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.