Kazuto Hatakeyama, Tatsuki Tsugawa, Haruki Watanabe, Kanako Oka, Sho Kinoshita, Keisuke Awaya, Michio Koinuma and Shintaro Ida
{"title":"低温燃料电池采用质子导电硅酸盐固体电解质","authors":"Kazuto Hatakeyama, Tatsuki Tsugawa, Haruki Watanabe, Kanako Oka, Sho Kinoshita, Keisuke Awaya, Michio Koinuma and Shintaro Ida","doi":"10.1039/D5TA02486B","DOIUrl":null,"url":null,"abstract":"<p >Fuel cells utilizing proton-conducting oxides generally require operating temperatures of at least 500 °C, limiting their applicability in low-temperature fuel cells. Herein, we report flexible solid electrolytes, H<small><sub>0.37</sub></small>Al<small><sub>1.67</sub></small>Mg<small><sub>0.35</sub></small>Fe<small><sub>0.11</sub></small>Si<small><sub>3.9</sub></small>O<small><sub>10</sub></small>(OH)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O)<small><sub>2.6</sub></small>, fabricated with monolayer silicate nanosheets, which exhibit high proton conductivity (0.005–0.02 S cm<small><sup>−2</sup></small> at 90 °C) and superior hydrogen gas barrier properties compared with Nafion. The H<small><sub>2</sub></small> fuel cells fabricated using this membrane achieved a maximum current density of 1080 mA cm<small><sup>−2</sup></small> and a maximum power density of 264 mW cm<small><sup>−2</sup></small> at 90 °C. Furthermore, the cell operates effectively across a wide temperature range (−10–140 °C). It has the potential to become a next-generation fuel cell that addresses the challenges of both conventional low-temperature and high-temperature fuel cells.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 24","pages":" 18784-18792"},"PeriodicalIF":9.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-temperature fuel cells using proton-conducting silicate solid electrolyte†\",\"authors\":\"Kazuto Hatakeyama, Tatsuki Tsugawa, Haruki Watanabe, Kanako Oka, Sho Kinoshita, Keisuke Awaya, Michio Koinuma and Shintaro Ida\",\"doi\":\"10.1039/D5TA02486B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Fuel cells utilizing proton-conducting oxides generally require operating temperatures of at least 500 °C, limiting their applicability in low-temperature fuel cells. Herein, we report flexible solid electrolytes, H<small><sub>0.37</sub></small>Al<small><sub>1.67</sub></small>Mg<small><sub>0.35</sub></small>Fe<small><sub>0.11</sub></small>Si<small><sub>3.9</sub></small>O<small><sub>10</sub></small>(OH)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O)<small><sub>2.6</sub></small>, fabricated with monolayer silicate nanosheets, which exhibit high proton conductivity (0.005–0.02 S cm<small><sup>−2</sup></small> at 90 °C) and superior hydrogen gas barrier properties compared with Nafion. The H<small><sub>2</sub></small> fuel cells fabricated using this membrane achieved a maximum current density of 1080 mA cm<small><sup>−2</sup></small> and a maximum power density of 264 mW cm<small><sup>−2</sup></small> at 90 °C. Furthermore, the cell operates effectively across a wide temperature range (−10–140 °C). It has the potential to become a next-generation fuel cell that addresses the challenges of both conventional low-temperature and high-temperature fuel cells.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 24\",\"pages\":\" 18784-18792\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02486b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02486b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
利用固体氧化物质子导体的燃料电池通常需要500℃以上的工作温度,这限制了它们在低温燃料电池中的适用性。在此,我们报道了用单层硅酸盐纳米片制备的柔性固体电解质h0.37 al1.67 mg0.35 fe0.11 si3.90 o10 (OH)2(H2O)2.6,与Nafion相比,它具有高质子电导率(90°C时0.005-0.02 S cm-2)和优越的氢气阻隔性能。该硅酸盐纳米片具有正六边形环的面内结构,使得质子电导率在面内和面外方向上的各向异性较低,比其他纳米片小250-50000倍。使用该膜制备的氢气燃料电池在90℃下的最大电流密度为1080 mA cm-2,最大功率密度为264 mW cm-2。此外,该电池在宽温度范围(-10-140°C)内有效工作。它有可能成为下一代燃料电池,解决传统低温和高温燃料电池的挑战。
Low-temperature fuel cells using proton-conducting silicate solid electrolyte†
Fuel cells utilizing proton-conducting oxides generally require operating temperatures of at least 500 °C, limiting their applicability in low-temperature fuel cells. Herein, we report flexible solid electrolytes, H0.37Al1.67Mg0.35Fe0.11Si3.9O10(OH)2(H2O)2.6, fabricated with monolayer silicate nanosheets, which exhibit high proton conductivity (0.005–0.02 S cm−2 at 90 °C) and superior hydrogen gas barrier properties compared with Nafion. The H2 fuel cells fabricated using this membrane achieved a maximum current density of 1080 mA cm−2 and a maximum power density of 264 mW cm−2 at 90 °C. Furthermore, the cell operates effectively across a wide temperature range (−10–140 °C). It has the potential to become a next-generation fuel cell that addresses the challenges of both conventional low-temperature and high-temperature fuel cells.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.