DNA双链断裂修复抑制质体到核基因转移

IF 15.8 1区 生物学 Q1 PLANT SCIENCES
Enrique Gonzalez-Duran, Xenia Kroop, Anne Schadach, Ralph Bock
{"title":"DNA双链断裂修复抑制质体到核基因转移","authors":"Enrique Gonzalez-Duran, Xenia Kroop, Anne Schadach, Ralph Bock","doi":"10.1038/s41477-025-02005-w","DOIUrl":null,"url":null,"abstract":"<p>Plant nuclear genomes contain thousands of genes of mitochondrial and plastid origin as the result of endosymbiotic gene transfer (EGT). EGT is a still-ongoing process, but the molecular mechanisms determining its frequency remain largely unknown. Here we demonstrate that nuclear double-strand break (DSB) repair is a strong suppressor of EGT. Through large-scale genetic screens in tobacco plants, we found that EGT from plastids to the nucleus occurs more frequently in somatic cells when individual DSB repair pathways are inactive. This effect is explained by the expected increase in the number and residence time of DSBs available as integration sites for organellar DNA. We also show that impaired DSB repair causes EGT to increase 5- to 20-fold in the male gametophyte. Together, our data (1) uncover DSB levels as a key determinant of EGT frequency, (2) reveal the strong mutagenic potential of organellar DNA and (3) suggest that changes in DNA repair capacity can impact EGT across evolutionary timescales.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"4 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of plastid-to-nucleus gene transfer by DNA double-strand break repair\",\"authors\":\"Enrique Gonzalez-Duran, Xenia Kroop, Anne Schadach, Ralph Bock\",\"doi\":\"10.1038/s41477-025-02005-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plant nuclear genomes contain thousands of genes of mitochondrial and plastid origin as the result of endosymbiotic gene transfer (EGT). EGT is a still-ongoing process, but the molecular mechanisms determining its frequency remain largely unknown. Here we demonstrate that nuclear double-strand break (DSB) repair is a strong suppressor of EGT. Through large-scale genetic screens in tobacco plants, we found that EGT from plastids to the nucleus occurs more frequently in somatic cells when individual DSB repair pathways are inactive. This effect is explained by the expected increase in the number and residence time of DSBs available as integration sites for organellar DNA. We also show that impaired DSB repair causes EGT to increase 5- to 20-fold in the male gametophyte. Together, our data (1) uncover DSB levels as a key determinant of EGT frequency, (2) reveal the strong mutagenic potential of organellar DNA and (3) suggest that changes in DNA repair capacity can impact EGT across evolutionary timescales.</p>\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41477-025-02005-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-025-02005-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物核基因组包含数千个线粒体和质体起源的基因,这是内共生基因转移(EGT)的结果。EGT是一个仍在进行的过程,但决定其频率的分子机制在很大程度上仍然未知。本研究表明,核双链断裂(DSB)修复是EGT的强抑制因子。通过烟草植物的大规模遗传筛选,我们发现当单个DSB修复途径失活时,体细胞中从质体到细胞核的EGT发生的频率更高。这种效应可以用dsb作为细胞器DNA整合位点的数量和停留时间的预期增加来解释。我们还发现,受损的DSB修复导致EGT在雄性配子体中增加5- 20倍。总之,我们的数据(1)揭示了DSB水平是EGT频率的关键决定因素,(2)揭示了细胞器DNA强大的致突变潜力,(3)表明DNA修复能力的变化可以在进化时间尺度上影响EGT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Suppression of plastid-to-nucleus gene transfer by DNA double-strand break repair

Suppression of plastid-to-nucleus gene transfer by DNA double-strand break repair

Plant nuclear genomes contain thousands of genes of mitochondrial and plastid origin as the result of endosymbiotic gene transfer (EGT). EGT is a still-ongoing process, but the molecular mechanisms determining its frequency remain largely unknown. Here we demonstrate that nuclear double-strand break (DSB) repair is a strong suppressor of EGT. Through large-scale genetic screens in tobacco plants, we found that EGT from plastids to the nucleus occurs more frequently in somatic cells when individual DSB repair pathways are inactive. This effect is explained by the expected increase in the number and residence time of DSBs available as integration sites for organellar DNA. We also show that impaired DSB repair causes EGT to increase 5- to 20-fold in the male gametophyte. Together, our data (1) uncover DSB levels as a key determinant of EGT frequency, (2) reveal the strong mutagenic potential of organellar DNA and (3) suggest that changes in DNA repair capacity can impact EGT across evolutionary timescales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信