{"title":"乙酰化纤维素通过肠道共生体消耗宿主可获得的碳水化合物来抑制体重增加","authors":"Tadashi Takeuchi, Eiji Miyauchi, Yumiko Nakanishi, Yusuke Ito, Tamotsu Kato, Katsuki Yaguchi, Masami Kawasumi, Naoko Tachibana, Ayumi Ito, Shu Shimamoto, Akinobu Matsuyama, Nobuo Sasaki, Ikuo Kimura, Hiroshi Ohno","doi":"10.1016/j.cmet.2025.04.013","DOIUrl":null,"url":null,"abstract":"Effective approaches to preventing and treating obesity are urgently needed. Although current strategies primarily focus on direct modulation of host metabolism, another promising approach may involve limiting nutrient availability through regulation of the gut microbiota, which links diet and host physiology. Here, we report that acetylated cellulose (AceCel), which markedly alters gut bacterial composition and function, reduces body mass gain in both wild-type and obese mice. AceCel limits carbohydrate oxidation and promotes fatty acid oxidation in the host liver in a microbiota-dependent manner. We further show that acetate enhances carbohydrate fermentation by the gut commensal <em>Bacteroides thetaiotaomicron</em>, depleting host-accessible simple sugars in the gut of AceCel-fed mice. These findings highlight the potential of AceCel as a prebiotic that regulates carbohydrate metabolism in both bacteria and host, offering promise as a therapeutic strategy for obesity.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"33 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acetylated cellulose suppresses body mass gain through gut commensals consuming host-accessible carbohydrates\",\"authors\":\"Tadashi Takeuchi, Eiji Miyauchi, Yumiko Nakanishi, Yusuke Ito, Tamotsu Kato, Katsuki Yaguchi, Masami Kawasumi, Naoko Tachibana, Ayumi Ito, Shu Shimamoto, Akinobu Matsuyama, Nobuo Sasaki, Ikuo Kimura, Hiroshi Ohno\",\"doi\":\"10.1016/j.cmet.2025.04.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective approaches to preventing and treating obesity are urgently needed. Although current strategies primarily focus on direct modulation of host metabolism, another promising approach may involve limiting nutrient availability through regulation of the gut microbiota, which links diet and host physiology. Here, we report that acetylated cellulose (AceCel), which markedly alters gut bacterial composition and function, reduces body mass gain in both wild-type and obese mice. AceCel limits carbohydrate oxidation and promotes fatty acid oxidation in the host liver in a microbiota-dependent manner. We further show that acetate enhances carbohydrate fermentation by the gut commensal <em>Bacteroides thetaiotaomicron</em>, depleting host-accessible simple sugars in the gut of AceCel-fed mice. These findings highlight the potential of AceCel as a prebiotic that regulates carbohydrate metabolism in both bacteria and host, offering promise as a therapeutic strategy for obesity.\",\"PeriodicalId\":9840,\"journal\":{\"name\":\"Cell metabolism\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell metabolism\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2025.04.013\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2025.04.013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Acetylated cellulose suppresses body mass gain through gut commensals consuming host-accessible carbohydrates
Effective approaches to preventing and treating obesity are urgently needed. Although current strategies primarily focus on direct modulation of host metabolism, another promising approach may involve limiting nutrient availability through regulation of the gut microbiota, which links diet and host physiology. Here, we report that acetylated cellulose (AceCel), which markedly alters gut bacterial composition and function, reduces body mass gain in both wild-type and obese mice. AceCel limits carbohydrate oxidation and promotes fatty acid oxidation in the host liver in a microbiota-dependent manner. We further show that acetate enhances carbohydrate fermentation by the gut commensal Bacteroides thetaiotaomicron, depleting host-accessible simple sugars in the gut of AceCel-fed mice. These findings highlight the potential of AceCel as a prebiotic that regulates carbohydrate metabolism in both bacteria and host, offering promise as a therapeutic strategy for obesity.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.