{"title":"4d打印自适应和可编程变形电池。","authors":"Shaoshuai Ma,Pan Xue,Cristian Valenzuela,Yuan Liu,Yuanhao Chen,Yufan Feng,Ran Bi,Xinnuo Yang,Yanzhao Yang,CaiXia Sun,Xinhua Xu,Ling Wang","doi":"10.1002/adma.202505018","DOIUrl":null,"url":null,"abstract":"Shape-morphing batteries that can reconfigure their shape to adapt to different tasks are highly desirable for emerging soft electronics in diverse fields. However, it is a challenging task to develop advanced shape-morphing batteries with on-demand programmability and adaptive responsiveness. Here, 4D-printed programmable shape-morphing batteries by sequentially direct-ink-writing of shape-programmable liquid crystal elastomers (LCEs) and in-situ covalent crosslinked flexible zinc-ion microbatteries, where tough covalent bonding is built at the interface, are reported. The resulting shape-morphing batteries exhibit controllable, reversible, and programmable shape-morphing by controlling sophisticated molecular alignment of LCEs, which enables them to adaptively alter configurations to accommodate different functionalities. Importantly, diverse origami batteries with excellent spatiotemporal controllability are demonstrated by precisely designing active hinges to achieve adaptive transformations from folded to deployed configurations. The programmable shape-morphing mechanisms of the batteries are revealed by finite element analyses. As a proof-of-concept illustration, adaptive shape-morphing battery systems capable of interactive communication and controllable sensing are developed through the incorporation of an elaborate all-MXene-printed near-field-communication antenna, which can adaptively tune its deployment configuration according to variations in environmental humidity or dust content. This work brings new insights for the development of next-generation shape-morphing power sources, human-machine interactive electronics, and swarm intelligence.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"30 1","pages":"e2505018"},"PeriodicalIF":27.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4D-Printed Adaptive and Programmable Shape-Morphing Batteries.\",\"authors\":\"Shaoshuai Ma,Pan Xue,Cristian Valenzuela,Yuan Liu,Yuanhao Chen,Yufan Feng,Ran Bi,Xinnuo Yang,Yanzhao Yang,CaiXia Sun,Xinhua Xu,Ling Wang\",\"doi\":\"10.1002/adma.202505018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shape-morphing batteries that can reconfigure their shape to adapt to different tasks are highly desirable for emerging soft electronics in diverse fields. However, it is a challenging task to develop advanced shape-morphing batteries with on-demand programmability and adaptive responsiveness. Here, 4D-printed programmable shape-morphing batteries by sequentially direct-ink-writing of shape-programmable liquid crystal elastomers (LCEs) and in-situ covalent crosslinked flexible zinc-ion microbatteries, where tough covalent bonding is built at the interface, are reported. The resulting shape-morphing batteries exhibit controllable, reversible, and programmable shape-morphing by controlling sophisticated molecular alignment of LCEs, which enables them to adaptively alter configurations to accommodate different functionalities. Importantly, diverse origami batteries with excellent spatiotemporal controllability are demonstrated by precisely designing active hinges to achieve adaptive transformations from folded to deployed configurations. The programmable shape-morphing mechanisms of the batteries are revealed by finite element analyses. As a proof-of-concept illustration, adaptive shape-morphing battery systems capable of interactive communication and controllable sensing are developed through the incorporation of an elaborate all-MXene-printed near-field-communication antenna, which can adaptively tune its deployment configuration according to variations in environmental humidity or dust content. This work brings new insights for the development of next-generation shape-morphing power sources, human-machine interactive electronics, and swarm intelligence.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"30 1\",\"pages\":\"e2505018\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202505018\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202505018","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
4D-Printed Adaptive and Programmable Shape-Morphing Batteries.
Shape-morphing batteries that can reconfigure their shape to adapt to different tasks are highly desirable for emerging soft electronics in diverse fields. However, it is a challenging task to develop advanced shape-morphing batteries with on-demand programmability and adaptive responsiveness. Here, 4D-printed programmable shape-morphing batteries by sequentially direct-ink-writing of shape-programmable liquid crystal elastomers (LCEs) and in-situ covalent crosslinked flexible zinc-ion microbatteries, where tough covalent bonding is built at the interface, are reported. The resulting shape-morphing batteries exhibit controllable, reversible, and programmable shape-morphing by controlling sophisticated molecular alignment of LCEs, which enables them to adaptively alter configurations to accommodate different functionalities. Importantly, diverse origami batteries with excellent spatiotemporal controllability are demonstrated by precisely designing active hinges to achieve adaptive transformations from folded to deployed configurations. The programmable shape-morphing mechanisms of the batteries are revealed by finite element analyses. As a proof-of-concept illustration, adaptive shape-morphing battery systems capable of interactive communication and controllable sensing are developed through the incorporation of an elaborate all-MXene-printed near-field-communication antenna, which can adaptively tune its deployment configuration according to variations in environmental humidity or dust content. This work brings new insights for the development of next-generation shape-morphing power sources, human-machine interactive electronics, and swarm intelligence.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.