Eman Khatib-Massalha,Christian Andrea Di Buduo,Agathe L Chédeville,Ya-Hsuan Ho,Yexuan Zhu,Elodie Grockowiak,Yuki Date,Lam Tan Khuat,Zijian Fang,Jose Quesada-Salas,Eva Carrillo Félez,Matteo Migliavacca,Isabel Montero,José Antonio Pérez-Simón,Alessandra Balduini,Simón Méndez-Ferrer
{"title":"JAK2V617F骨髓增殖性肿瘤中性粒细胞清除缺陷通过免疫检查点CD24驱动骨髓纤维化","authors":"Eman Khatib-Massalha,Christian Andrea Di Buduo,Agathe L Chédeville,Ya-Hsuan Ho,Yexuan Zhu,Elodie Grockowiak,Yuki Date,Lam Tan Khuat,Zijian Fang,Jose Quesada-Salas,Eva Carrillo Félez,Matteo Migliavacca,Isabel Montero,José Antonio Pérez-Simón,Alessandra Balduini,Simón Méndez-Ferrer","doi":"10.1182/blood.2024027455","DOIUrl":null,"url":null,"abstract":"Myeloproliferative neoplasms (MPNs) are hematopoietic stem cell-driven malignancies marked by excessive myelopoiesis and high risk of myelofibrosis, which remains therapeutically challenging. Senescent neutrophils home daily to the bone marrow (BM) to be cleared by macrophages. This avoids their accumulation, which can increase the risk of chronic inflammation or oncogenesis. Neutrophils carrying the most common oncogenic MPN driver (JAK2V617F) are protected from apoptosis, which may prolong their lifespan and enhance their pro-inflammatory activity. On the other hand, abnormal interactions of neutrophils with megakaryocytes (\"emperipolesis\") have been associated with BM fibrosis in disparate hematological disorders, including MPN and grey platelet syndrome; however, the underlying pathophysiology remains unclear. We investigated neutrophil homeostasis and cellular interactions in MPN. We found that senescent neutrophils evade homeostatic clearance and accumulate in JAK2V617F MPN, but not in MPN caused by the second most prevalent mutations affecting Calreticulin (CALR) gene. This is explained by GM-CSF-JAK2-STAT5-dependent upregulation of the \"don't-eat-me\" signal CD24 in neutrophils. Mechanistically, JAK2V617F CD24hi neutrophils evade efferocytosis, invade megakaryocytes and increase active TGF-b. Collectively, JAK2V617F neutrophil-megakaryocyte interactions promote platelet production in a humanized bioreactor and myelofibrosis in mouse models. Notably, chronic antibody blockade or genetic loss of CD24 restores clearance of senescent neutrophils, reduces emperipolesis and active TGF-b. Consequently, CD24 blockade improves thrombocytosis and prevents myelofibrosis in MPN mice. Taken together, these findings reveals defective neutrophil clearance as a cause of pathogenic microenvironmental interactions of inflammatory neutrophils with megakaryocytes, associated with myelofibrosis in MPN. Our study postulate CD24 as a candidate innate immune checkpoint in MPN.","PeriodicalId":9102,"journal":{"name":"Blood","volume":"5 1","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defective neutrophil clearance in JAK2V617F myeloproliferative neoplasms drives myelofibrosis via immune checkpoint CD24.\",\"authors\":\"Eman Khatib-Massalha,Christian Andrea Di Buduo,Agathe L Chédeville,Ya-Hsuan Ho,Yexuan Zhu,Elodie Grockowiak,Yuki Date,Lam Tan Khuat,Zijian Fang,Jose Quesada-Salas,Eva Carrillo Félez,Matteo Migliavacca,Isabel Montero,José Antonio Pérez-Simón,Alessandra Balduini,Simón Méndez-Ferrer\",\"doi\":\"10.1182/blood.2024027455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Myeloproliferative neoplasms (MPNs) are hematopoietic stem cell-driven malignancies marked by excessive myelopoiesis and high risk of myelofibrosis, which remains therapeutically challenging. Senescent neutrophils home daily to the bone marrow (BM) to be cleared by macrophages. This avoids their accumulation, which can increase the risk of chronic inflammation or oncogenesis. Neutrophils carrying the most common oncogenic MPN driver (JAK2V617F) are protected from apoptosis, which may prolong their lifespan and enhance their pro-inflammatory activity. On the other hand, abnormal interactions of neutrophils with megakaryocytes (\\\"emperipolesis\\\") have been associated with BM fibrosis in disparate hematological disorders, including MPN and grey platelet syndrome; however, the underlying pathophysiology remains unclear. We investigated neutrophil homeostasis and cellular interactions in MPN. We found that senescent neutrophils evade homeostatic clearance and accumulate in JAK2V617F MPN, but not in MPN caused by the second most prevalent mutations affecting Calreticulin (CALR) gene. This is explained by GM-CSF-JAK2-STAT5-dependent upregulation of the \\\"don't-eat-me\\\" signal CD24 in neutrophils. Mechanistically, JAK2V617F CD24hi neutrophils evade efferocytosis, invade megakaryocytes and increase active TGF-b. Collectively, JAK2V617F neutrophil-megakaryocyte interactions promote platelet production in a humanized bioreactor and myelofibrosis in mouse models. Notably, chronic antibody blockade or genetic loss of CD24 restores clearance of senescent neutrophils, reduces emperipolesis and active TGF-b. Consequently, CD24 blockade improves thrombocytosis and prevents myelofibrosis in MPN mice. Taken together, these findings reveals defective neutrophil clearance as a cause of pathogenic microenvironmental interactions of inflammatory neutrophils with megakaryocytes, associated with myelofibrosis in MPN. Our study postulate CD24 as a candidate innate immune checkpoint in MPN.\",\"PeriodicalId\":9102,\"journal\":{\"name\":\"Blood\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":21.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1182/blood.2024027455\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024027455","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Defective neutrophil clearance in JAK2V617F myeloproliferative neoplasms drives myelofibrosis via immune checkpoint CD24.
Myeloproliferative neoplasms (MPNs) are hematopoietic stem cell-driven malignancies marked by excessive myelopoiesis and high risk of myelofibrosis, which remains therapeutically challenging. Senescent neutrophils home daily to the bone marrow (BM) to be cleared by macrophages. This avoids their accumulation, which can increase the risk of chronic inflammation or oncogenesis. Neutrophils carrying the most common oncogenic MPN driver (JAK2V617F) are protected from apoptosis, which may prolong their lifespan and enhance their pro-inflammatory activity. On the other hand, abnormal interactions of neutrophils with megakaryocytes ("emperipolesis") have been associated with BM fibrosis in disparate hematological disorders, including MPN and grey platelet syndrome; however, the underlying pathophysiology remains unclear. We investigated neutrophil homeostasis and cellular interactions in MPN. We found that senescent neutrophils evade homeostatic clearance and accumulate in JAK2V617F MPN, but not in MPN caused by the second most prevalent mutations affecting Calreticulin (CALR) gene. This is explained by GM-CSF-JAK2-STAT5-dependent upregulation of the "don't-eat-me" signal CD24 in neutrophils. Mechanistically, JAK2V617F CD24hi neutrophils evade efferocytosis, invade megakaryocytes and increase active TGF-b. Collectively, JAK2V617F neutrophil-megakaryocyte interactions promote platelet production in a humanized bioreactor and myelofibrosis in mouse models. Notably, chronic antibody blockade or genetic loss of CD24 restores clearance of senescent neutrophils, reduces emperipolesis and active TGF-b. Consequently, CD24 blockade improves thrombocytosis and prevents myelofibrosis in MPN mice. Taken together, these findings reveals defective neutrophil clearance as a cause of pathogenic microenvironmental interactions of inflammatory neutrophils with megakaryocytes, associated with myelofibrosis in MPN. Our study postulate CD24 as a candidate innate immune checkpoint in MPN.
期刊介绍:
Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.