Hyun-Kyung Um,Eunseo Noh,Chaehwa Yoo,Hyang Woon Lee,Je-Won Kang,Byoung Hoon Lee,Jung-Rok Lee
{"title":"利用集成可拉伸透明电极的多通道可穿戴设备进行移动睡眠阶段分析。","authors":"Hyun-Kyung Um,Eunseo Noh,Chaehwa Yoo,Hyang Woon Lee,Je-Won Kang,Byoung Hoon Lee,Jung-Rok Lee","doi":"10.1021/acssensors.4c03602","DOIUrl":null,"url":null,"abstract":"The prevalence of sleep disorders in the aging population and the importance of sleep quality for health have emphasized the need for accurate and accessible sleep monitoring solutions. Polysomnography (PSG) remains the clinical gold standard for diagnosing sleep disorders; however, its discomfort and inconvenience limit its accessibility. To address these issues, a wearable device (WD) integrated with stretchable transparent electrodes (STEs) is developed in this study for multisignal sleep monitoring and artificial intelligence (AI)-driven sleep staging. Utilizing conductive and flexible STEs, the WD records multiple biological signals (electroencephalogram [EEG], electrooculogram [EOG], electromyogram [EMG], photoplethysmography, and motion data) with high precision and low noise, comparable to PSG (<4 μVRMS). It achieves a 73.2% accuracy and a macro F1 score of 0.72 in sleep staging using an AI model trained on multisignal inputs. Notably, accuracy marginally improves when using only the EEG, EOG, and EMG channels, which may simplify future device designs. This WD offers a compact, multisignal solution for at-home sleep monitoring, with the potential for use as an evaluation tool for personalized sleep therapies.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"232 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobile Sleep Stage Analysis Using Multichannel Wearable Devices Integrated with Stretchable Transparent Electrodes.\",\"authors\":\"Hyun-Kyung Um,Eunseo Noh,Chaehwa Yoo,Hyang Woon Lee,Je-Won Kang,Byoung Hoon Lee,Jung-Rok Lee\",\"doi\":\"10.1021/acssensors.4c03602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prevalence of sleep disorders in the aging population and the importance of sleep quality for health have emphasized the need for accurate and accessible sleep monitoring solutions. Polysomnography (PSG) remains the clinical gold standard for diagnosing sleep disorders; however, its discomfort and inconvenience limit its accessibility. To address these issues, a wearable device (WD) integrated with stretchable transparent electrodes (STEs) is developed in this study for multisignal sleep monitoring and artificial intelligence (AI)-driven sleep staging. Utilizing conductive and flexible STEs, the WD records multiple biological signals (electroencephalogram [EEG], electrooculogram [EOG], electromyogram [EMG], photoplethysmography, and motion data) with high precision and low noise, comparable to PSG (<4 μVRMS). It achieves a 73.2% accuracy and a macro F1 score of 0.72 in sleep staging using an AI model trained on multisignal inputs. Notably, accuracy marginally improves when using only the EEG, EOG, and EMG channels, which may simplify future device designs. This WD offers a compact, multisignal solution for at-home sleep monitoring, with the potential for use as an evaluation tool for personalized sleep therapies.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"232 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.4c03602\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03602","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Mobile Sleep Stage Analysis Using Multichannel Wearable Devices Integrated with Stretchable Transparent Electrodes.
The prevalence of sleep disorders in the aging population and the importance of sleep quality for health have emphasized the need for accurate and accessible sleep monitoring solutions. Polysomnography (PSG) remains the clinical gold standard for diagnosing sleep disorders; however, its discomfort and inconvenience limit its accessibility. To address these issues, a wearable device (WD) integrated with stretchable transparent electrodes (STEs) is developed in this study for multisignal sleep monitoring and artificial intelligence (AI)-driven sleep staging. Utilizing conductive and flexible STEs, the WD records multiple biological signals (electroencephalogram [EEG], electrooculogram [EOG], electromyogram [EMG], photoplethysmography, and motion data) with high precision and low noise, comparable to PSG (<4 μVRMS). It achieves a 73.2% accuracy and a macro F1 score of 0.72 in sleep staging using an AI model trained on multisignal inputs. Notably, accuracy marginally improves when using only the EEG, EOG, and EMG channels, which may simplify future device designs. This WD offers a compact, multisignal solution for at-home sleep monitoring, with the potential for use as an evaluation tool for personalized sleep therapies.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.