{"title":"通过原位聚合稳定金纳米四足体用于优越的光声和光热应用。","authors":"Jing Wang,Huazhen Chen,Dazhi Chen,Yuchao Luo,Zhi-Li Shen,Ning-Ning Zhang,Biqin Dong,Wenjing Tian,Kun Liu,Bin Xu","doi":"10.1021/acs.nanolett.5c01764","DOIUrl":null,"url":null,"abstract":"Gold nanotetrapods (NTPs) possess sharp branched tips, high surface-to-volume ratios, and strong localized surface plasmon resonance in the near-infrared (NIR) region, making them candidates for biomedical applications. However, their practical use is limited by structural instability and inadequate biocompatibility in complex physiological environments. In this study, we developed an innovative in situ radical polymerization technique to encapsulate NTPs with a thin, cross-linked zwitterionic polymer shell, forming highly stable and biocompatible nanoparticles (NTP@XP). The polymer shell preserved the tetrapod structure and endowed NTPs with tunable surface properties through the polymerization of different monomers. Under NIR irradiation, NTP@XP exhibited enhanced photoacoustic imaging and a photothermal conversion performance in vitro. In vivo, the antifouling and biocompatible coating of NTP@XP allowed durable imaging and suppressed tumor regrowth in mice. This work establishes in situ polymerization as a robust strategy to stabilize NTPs, paving the way for various biomedical fields.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"53 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing Gold Nanotetrapods via in Situ Polymerization for Superior Photoacoustic and Photothermal Applications.\",\"authors\":\"Jing Wang,Huazhen Chen,Dazhi Chen,Yuchao Luo,Zhi-Li Shen,Ning-Ning Zhang,Biqin Dong,Wenjing Tian,Kun Liu,Bin Xu\",\"doi\":\"10.1021/acs.nanolett.5c01764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gold nanotetrapods (NTPs) possess sharp branched tips, high surface-to-volume ratios, and strong localized surface plasmon resonance in the near-infrared (NIR) region, making them candidates for biomedical applications. However, their practical use is limited by structural instability and inadequate biocompatibility in complex physiological environments. In this study, we developed an innovative in situ radical polymerization technique to encapsulate NTPs with a thin, cross-linked zwitterionic polymer shell, forming highly stable and biocompatible nanoparticles (NTP@XP). The polymer shell preserved the tetrapod structure and endowed NTPs with tunable surface properties through the polymerization of different monomers. Under NIR irradiation, NTP@XP exhibited enhanced photoacoustic imaging and a photothermal conversion performance in vitro. In vivo, the antifouling and biocompatible coating of NTP@XP allowed durable imaging and suppressed tumor regrowth in mice. This work establishes in situ polymerization as a robust strategy to stabilize NTPs, paving the way for various biomedical fields.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c01764\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01764","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stabilizing Gold Nanotetrapods via in Situ Polymerization for Superior Photoacoustic and Photothermal Applications.
Gold nanotetrapods (NTPs) possess sharp branched tips, high surface-to-volume ratios, and strong localized surface plasmon resonance in the near-infrared (NIR) region, making them candidates for biomedical applications. However, their practical use is limited by structural instability and inadequate biocompatibility in complex physiological environments. In this study, we developed an innovative in situ radical polymerization technique to encapsulate NTPs with a thin, cross-linked zwitterionic polymer shell, forming highly stable and biocompatible nanoparticles (NTP@XP). The polymer shell preserved the tetrapod structure and endowed NTPs with tunable surface properties through the polymerization of different monomers. Under NIR irradiation, NTP@XP exhibited enhanced photoacoustic imaging and a photothermal conversion performance in vitro. In vivo, the antifouling and biocompatible coating of NTP@XP allowed durable imaging and suppressed tumor regrowth in mice. This work establishes in situ polymerization as a robust strategy to stabilize NTPs, paving the way for various biomedical fields.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.