Onkopus:生物医学研究和精准医学序列变异的精确解释和优先排序。

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nadine S Kurz,Kevin Kornrumpf,Tim Tucholski,Klara Drofenik,Alexander König,Tim Beißbarth,Jürgen Dönitz
{"title":"Onkopus:生物医学研究和精准医学序列变异的精确解释和优先排序。","authors":"Nadine S Kurz,Kevin Kornrumpf,Tim Tucholski,Klara Drofenik,Alexander König,Tim Beißbarth,Jürgen Dönitz","doi":"10.1093/nar/gkaf376","DOIUrl":null,"url":null,"abstract":"One of the major challenges in precision oncology is the identification of pathogenic, actionable variants and the selection of personalized treatments. We present Onkopus, a variant interpretation framework based on a modular architecture, for interpreting and prioritizing genetic alterations in cancer patients. A multitude of tools and databases are integrated into Onkopus to provide a comprehensive overview about the consequences of a variant, each with its own semantic, including pathogenicity predictions, allele frequency, biochemical and protein features, and therapeutic options. We present the characteristics of variants and personalized therapies in a clear and concise form, supported by interactive plots. To support the interpretation of variants of unknown significance (VUS), we present a protein analysis based on protein structures, which allows variants to be analyzed within the context of the entire protein, thereby serving as a starting point for understanding the underlying causes of variant pathogenicity. Onkopus has the potential to significantly enhance variant interpretation and the selection of actionable variants for identifying new targets, drug screens, drug testing using organoids, or personalized treatments in molecular tumor boards. We provide a free public instance of Onkopus at https://mtb.bioinf.med.uni-goettingen.de/onkopus.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"8 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Onkopus: precise interpretation and prioritization of sequence variants for biomedical research and precision medicine.\",\"authors\":\"Nadine S Kurz,Kevin Kornrumpf,Tim Tucholski,Klara Drofenik,Alexander König,Tim Beißbarth,Jürgen Dönitz\",\"doi\":\"10.1093/nar/gkaf376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major challenges in precision oncology is the identification of pathogenic, actionable variants and the selection of personalized treatments. We present Onkopus, a variant interpretation framework based on a modular architecture, for interpreting and prioritizing genetic alterations in cancer patients. A multitude of tools and databases are integrated into Onkopus to provide a comprehensive overview about the consequences of a variant, each with its own semantic, including pathogenicity predictions, allele frequency, biochemical and protein features, and therapeutic options. We present the characteristics of variants and personalized therapies in a clear and concise form, supported by interactive plots. To support the interpretation of variants of unknown significance (VUS), we present a protein analysis based on protein structures, which allows variants to be analyzed within the context of the entire protein, thereby serving as a starting point for understanding the underlying causes of variant pathogenicity. Onkopus has the potential to significantly enhance variant interpretation and the selection of actionable variants for identifying new targets, drug screens, drug testing using organoids, or personalized treatments in molecular tumor boards. We provide a free public instance of Onkopus at https://mtb.bioinf.med.uni-goettingen.de/onkopus.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf376\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf376","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精确肿瘤学的主要挑战之一是确定致病的、可操作的变异和选择个性化的治疗方法。我们提出了Onkopus,一个基于模块化架构的变体解释框架,用于解释和优先考虑癌症患者的遗传改变。大量的工具和数据库被整合到Onkopus中,以提供一个关于变异后果的全面概述,每个变异都有自己的语义,包括致病性预测、等位基因频率、生化和蛋白质特征以及治疗选择。我们以清晰简洁的形式呈现变体和个性化治疗的特征,并辅以互动情节。为了支持对未知意义变异(VUS)的解释,我们提出了一种基于蛋白质结构的蛋白质分析,这种分析允许在整个蛋白质的背景下分析变异,从而作为理解变异致病性潜在原因的起点。Onkopus具有显著增强变异解释和可操作变异选择的潜力,可用于识别新靶点、药物筛选、使用类器官的药物测试或分子肿瘤板的个性化治疗。我们在https://mtb.bioinf.med.uni-goettingen.de/onkopus上提供了Onkopus的免费公共实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Onkopus: precise interpretation and prioritization of sequence variants for biomedical research and precision medicine.
One of the major challenges in precision oncology is the identification of pathogenic, actionable variants and the selection of personalized treatments. We present Onkopus, a variant interpretation framework based on a modular architecture, for interpreting and prioritizing genetic alterations in cancer patients. A multitude of tools and databases are integrated into Onkopus to provide a comprehensive overview about the consequences of a variant, each with its own semantic, including pathogenicity predictions, allele frequency, biochemical and protein features, and therapeutic options. We present the characteristics of variants and personalized therapies in a clear and concise form, supported by interactive plots. To support the interpretation of variants of unknown significance (VUS), we present a protein analysis based on protein structures, which allows variants to be analyzed within the context of the entire protein, thereby serving as a starting point for understanding the underlying causes of variant pathogenicity. Onkopus has the potential to significantly enhance variant interpretation and the selection of actionable variants for identifying new targets, drug screens, drug testing using organoids, or personalized treatments in molecular tumor boards. We provide a free public instance of Onkopus at https://mtb.bioinf.med.uni-goettingen.de/onkopus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信