Nadine S Kurz,Kevin Kornrumpf,Tim Tucholski,Klara Drofenik,Alexander König,Tim Beißbarth,Jürgen Dönitz
{"title":"Onkopus:生物医学研究和精准医学序列变异的精确解释和优先排序。","authors":"Nadine S Kurz,Kevin Kornrumpf,Tim Tucholski,Klara Drofenik,Alexander König,Tim Beißbarth,Jürgen Dönitz","doi":"10.1093/nar/gkaf376","DOIUrl":null,"url":null,"abstract":"One of the major challenges in precision oncology is the identification of pathogenic, actionable variants and the selection of personalized treatments. We present Onkopus, a variant interpretation framework based on a modular architecture, for interpreting and prioritizing genetic alterations in cancer patients. A multitude of tools and databases are integrated into Onkopus to provide a comprehensive overview about the consequences of a variant, each with its own semantic, including pathogenicity predictions, allele frequency, biochemical and protein features, and therapeutic options. We present the characteristics of variants and personalized therapies in a clear and concise form, supported by interactive plots. To support the interpretation of variants of unknown significance (VUS), we present a protein analysis based on protein structures, which allows variants to be analyzed within the context of the entire protein, thereby serving as a starting point for understanding the underlying causes of variant pathogenicity. Onkopus has the potential to significantly enhance variant interpretation and the selection of actionable variants for identifying new targets, drug screens, drug testing using organoids, or personalized treatments in molecular tumor boards. We provide a free public instance of Onkopus at https://mtb.bioinf.med.uni-goettingen.de/onkopus.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"8 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Onkopus: precise interpretation and prioritization of sequence variants for biomedical research and precision medicine.\",\"authors\":\"Nadine S Kurz,Kevin Kornrumpf,Tim Tucholski,Klara Drofenik,Alexander König,Tim Beißbarth,Jürgen Dönitz\",\"doi\":\"10.1093/nar/gkaf376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major challenges in precision oncology is the identification of pathogenic, actionable variants and the selection of personalized treatments. We present Onkopus, a variant interpretation framework based on a modular architecture, for interpreting and prioritizing genetic alterations in cancer patients. A multitude of tools and databases are integrated into Onkopus to provide a comprehensive overview about the consequences of a variant, each with its own semantic, including pathogenicity predictions, allele frequency, biochemical and protein features, and therapeutic options. We present the characteristics of variants and personalized therapies in a clear and concise form, supported by interactive plots. To support the interpretation of variants of unknown significance (VUS), we present a protein analysis based on protein structures, which allows variants to be analyzed within the context of the entire protein, thereby serving as a starting point for understanding the underlying causes of variant pathogenicity. Onkopus has the potential to significantly enhance variant interpretation and the selection of actionable variants for identifying new targets, drug screens, drug testing using organoids, or personalized treatments in molecular tumor boards. We provide a free public instance of Onkopus at https://mtb.bioinf.med.uni-goettingen.de/onkopus.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf376\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf376","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Onkopus: precise interpretation and prioritization of sequence variants for biomedical research and precision medicine.
One of the major challenges in precision oncology is the identification of pathogenic, actionable variants and the selection of personalized treatments. We present Onkopus, a variant interpretation framework based on a modular architecture, for interpreting and prioritizing genetic alterations in cancer patients. A multitude of tools and databases are integrated into Onkopus to provide a comprehensive overview about the consequences of a variant, each with its own semantic, including pathogenicity predictions, allele frequency, biochemical and protein features, and therapeutic options. We present the characteristics of variants and personalized therapies in a clear and concise form, supported by interactive plots. To support the interpretation of variants of unknown significance (VUS), we present a protein analysis based on protein structures, which allows variants to be analyzed within the context of the entire protein, thereby serving as a starting point for understanding the underlying causes of variant pathogenicity. Onkopus has the potential to significantly enhance variant interpretation and the selection of actionable variants for identifying new targets, drug screens, drug testing using organoids, or personalized treatments in molecular tumor boards. We provide a free public instance of Onkopus at https://mtb.bioinf.med.uni-goettingen.de/onkopus.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.