室温钠硫电池协同催化研究进展。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-16 DOI:10.1002/smll.202503806
Yinxu Lu, Wanjie Gao, Guobin Xi, Jingyi Yang, Yuping Wu, Jiarui He
{"title":"室温钠硫电池协同催化研究进展。","authors":"Yinxu Lu,&nbsp;Wanjie Gao,&nbsp;Guobin Xi,&nbsp;Jingyi Yang,&nbsp;Yuping Wu,&nbsp;Jiarui He","doi":"10.1002/smll.202503806","DOIUrl":null,"url":null,"abstract":"<p>The low cost and high energy density characteristics of room-temperature sodium-sulfur (RT Na-S) batteries remarkably promote the development of sustainable large-scale energy-storage systems. However, there are serious problems with the shuttle effect and slow conversion kinetics caused by polysulfide dissolution in RT Na-S batteries, which can lead to decreased coulombic efficiency, rapid capacity degradation, and poor rate performance, hindering the practical application of RT Na-S batteries. Recently, numerous multimodal approaches have been attempted to address these issues, thereby promoting cycling stability and raising the energy density of RT Na-S batteries to a higher level. However, there is still a lack of a comprehensive and systematic summary of catalyst design based on the cooperative catalysis principle. In this review, the application advantages, operation mechanisms, and main challenges of RT Na-S batteries are first introduced. After that, the latest progress based on cooperative catalysts is elaborately summarized, exploring the corresponding work mechanisms and design principles of RT Na-S batteries. Finally, a summary of future research directions for developing high-performance RT Na-S batteries is presented.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 27","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on Cooperative Catalysis for Room-Temperature Sodium-Sulfur Batteries\",\"authors\":\"Yinxu Lu,&nbsp;Wanjie Gao,&nbsp;Guobin Xi,&nbsp;Jingyi Yang,&nbsp;Yuping Wu,&nbsp;Jiarui He\",\"doi\":\"10.1002/smll.202503806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The low cost and high energy density characteristics of room-temperature sodium-sulfur (RT Na-S) batteries remarkably promote the development of sustainable large-scale energy-storage systems. However, there are serious problems with the shuttle effect and slow conversion kinetics caused by polysulfide dissolution in RT Na-S batteries, which can lead to decreased coulombic efficiency, rapid capacity degradation, and poor rate performance, hindering the practical application of RT Na-S batteries. Recently, numerous multimodal approaches have been attempted to address these issues, thereby promoting cycling stability and raising the energy density of RT Na-S batteries to a higher level. However, there is still a lack of a comprehensive and systematic summary of catalyst design based on the cooperative catalysis principle. In this review, the application advantages, operation mechanisms, and main challenges of RT Na-S batteries are first introduced. After that, the latest progress based on cooperative catalysts is elaborately summarized, exploring the corresponding work mechanisms and design principles of RT Na-S batteries. Finally, a summary of future research directions for developing high-performance RT Na-S batteries is presented.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 27\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202503806\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202503806","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

室温钠硫(RT Na-S)电池的低成本和高能量密度特性极大地促进了可持续大规模储能系统的发展。然而,RT Na-S电池存在多硫化物溶解导致的穿梭效应和转化动力学缓慢等严重问题,导致库仑效率下降、容量退化快、倍率性能差,阻碍了RT Na-S电池的实际应用。最近,许多多模态方法被尝试解决这些问题,从而促进循环稳定性,并将RT Na-S电池的能量密度提高到更高的水平。然而,目前还缺乏基于协同催化原理的催化剂设计的全面、系统的总结。本文首先介绍了RT Na-S电池的应用优势、运行机理及面临的主要挑战。然后,详细总结了基于协同催化剂的最新进展,探讨了RT Na-S电池的相应工作机制和设计原则。最后,对高性能RT Na-S电池的未来研究方向进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Review on Cooperative Catalysis for Room-Temperature Sodium-Sulfur Batteries

Review on Cooperative Catalysis for Room-Temperature Sodium-Sulfur Batteries

The low cost and high energy density characteristics of room-temperature sodium-sulfur (RT Na-S) batteries remarkably promote the development of sustainable large-scale energy-storage systems. However, there are serious problems with the shuttle effect and slow conversion kinetics caused by polysulfide dissolution in RT Na-S batteries, which can lead to decreased coulombic efficiency, rapid capacity degradation, and poor rate performance, hindering the practical application of RT Na-S batteries. Recently, numerous multimodal approaches have been attempted to address these issues, thereby promoting cycling stability and raising the energy density of RT Na-S batteries to a higher level. However, there is still a lack of a comprehensive and systematic summary of catalyst design based on the cooperative catalysis principle. In this review, the application advantages, operation mechanisms, and main challenges of RT Na-S batteries are first introduced. After that, the latest progress based on cooperative catalysts is elaborately summarized, exploring the corresponding work mechanisms and design principles of RT Na-S batteries. Finally, a summary of future research directions for developing high-performance RT Na-S batteries is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信