Yimeng Zhu, Angelina Li, Suvrajit Maji, Brian J. Lee, Sophie M. Korn, Jake A. Gertie, Tyler J. Dorrity, Jianhua Wang, Kyle J. Wang, Amandine Pelletier, Daniel F. Moakley, Rachel D. Kelly, Antony B. Holmes, Raul Rabadan, David R. Edgell, Caroline Schild-Poulter, Mauro Modesti, Anna-Lena Steckelberg, Eric A. Hendrickson, Hachung Chung, Chaolin Zhang, Shan Zha
{"title":"Ku限制rna诱导的先天免疫,使alu在灵长类动物中扩增。","authors":"Yimeng Zhu, Angelina Li, Suvrajit Maji, Brian J. Lee, Sophie M. Korn, Jake A. Gertie, Tyler J. Dorrity, Jianhua Wang, Kyle J. Wang, Amandine Pelletier, Daniel F. Moakley, Rachel D. Kelly, Antony B. Holmes, Raul Rabadan, David R. Edgell, Caroline Schild-Poulter, Mauro Modesti, Anna-Lena Steckelberg, Eric A. Hendrickson, Hachung Chung, Chaolin Zhang, Shan Zha","doi":"10.1038/s41586-025-09104-w","DOIUrl":null,"url":null,"abstract":"Ku70 and Ku80 form the Ku heterodimer, a ring-shaped complex that initiates the non-homologous end-joining (NHEJ) DNA repair pathway1. Ku binds to double-stranded DNA ends and recruits other NHEJ factors, including LIG4 and DNA-PKcs. Although Ku can bind to double-stranded RNA (dsRNA)2 and trap mutated DNA-PKcs on ribosomal RNA3,4, the physiological role of the Ku–RNA interaction in otherwise wild-type cells remains unclear. Notably, Ku is dispensable for mouse development5,6 but is essential in human cells7. Despite their similar genome sizes, human cells express about 100-fold more Ku than mouse cells, suggesting that Ku has functions beyond NHEJ, possibly through a dose-sensitive interaction with dsRNA, which binds Ku 10 to 100 times more weakly than double-stranded DNA2,8. Here, Ku depletion induces profound interferon and NF-κB signalling via the dsRNA sensor MDA5–RIG-I and MAVS. Prolonged Ku degradation further activates other dsRNA sensors, especially PKR (also known as EIF2AK2) (suppressing translation) and OAS–RNaseL (cleaving ribosomal RNA), leading to growth arrest and cell death. Knockout of MAVS, RIG-I or MDA5 suppressed interferon signalling and, similarly to PKR knockout, partially rescued Ku-depleted human cells. Ku crosslinking and immunoprecipitation analyses revealed binding of Ku to diverse dsRNA molecules, predominantly stem-loops in primate-specific antisense Alu elements9 in introns and 3′ untranslated regions. Ku expression is higher in primates than in non-primate mammals and is tightly correlated with Alu expansion. Thus, Ku has a vital role in accommodating Alu expansion in primates, limiting dsRNA-induced innate immunity, which explains its high expression and essential function in human cells. Studies on the essentiality of Ku in human cells reveal that Ku interacts with diverse double-stranded RNA molecules, including antisense Alu, and enables tolerance of Alu sequence expansion in primates.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"643 8071","pages":"562-571"},"PeriodicalIF":48.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ku limits RNA-induced innate immunity to allow Alu expansion in primates\",\"authors\":\"Yimeng Zhu, Angelina Li, Suvrajit Maji, Brian J. Lee, Sophie M. Korn, Jake A. Gertie, Tyler J. Dorrity, Jianhua Wang, Kyle J. Wang, Amandine Pelletier, Daniel F. Moakley, Rachel D. Kelly, Antony B. Holmes, Raul Rabadan, David R. Edgell, Caroline Schild-Poulter, Mauro Modesti, Anna-Lena Steckelberg, Eric A. Hendrickson, Hachung Chung, Chaolin Zhang, Shan Zha\",\"doi\":\"10.1038/s41586-025-09104-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ku70 and Ku80 form the Ku heterodimer, a ring-shaped complex that initiates the non-homologous end-joining (NHEJ) DNA repair pathway1. Ku binds to double-stranded DNA ends and recruits other NHEJ factors, including LIG4 and DNA-PKcs. Although Ku can bind to double-stranded RNA (dsRNA)2 and trap mutated DNA-PKcs on ribosomal RNA3,4, the physiological role of the Ku–RNA interaction in otherwise wild-type cells remains unclear. Notably, Ku is dispensable for mouse development5,6 but is essential in human cells7. Despite their similar genome sizes, human cells express about 100-fold more Ku than mouse cells, suggesting that Ku has functions beyond NHEJ, possibly through a dose-sensitive interaction with dsRNA, which binds Ku 10 to 100 times more weakly than double-stranded DNA2,8. Here, Ku depletion induces profound interferon and NF-κB signalling via the dsRNA sensor MDA5–RIG-I and MAVS. Prolonged Ku degradation further activates other dsRNA sensors, especially PKR (also known as EIF2AK2) (suppressing translation) and OAS–RNaseL (cleaving ribosomal RNA), leading to growth arrest and cell death. Knockout of MAVS, RIG-I or MDA5 suppressed interferon signalling and, similarly to PKR knockout, partially rescued Ku-depleted human cells. Ku crosslinking and immunoprecipitation analyses revealed binding of Ku to diverse dsRNA molecules, predominantly stem-loops in primate-specific antisense Alu elements9 in introns and 3′ untranslated regions. Ku expression is higher in primates than in non-primate mammals and is tightly correlated with Alu expansion. Thus, Ku has a vital role in accommodating Alu expansion in primates, limiting dsRNA-induced innate immunity, which explains its high expression and essential function in human cells. Studies on the essentiality of Ku in human cells reveal that Ku interacts with diverse double-stranded RNA molecules, including antisense Alu, and enables tolerance of Alu sequence expansion in primates.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"643 8071\",\"pages\":\"562-571\"},\"PeriodicalIF\":48.5000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-025-09104-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-09104-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Ku limits RNA-induced innate immunity to allow Alu expansion in primates
Ku70 and Ku80 form the Ku heterodimer, a ring-shaped complex that initiates the non-homologous end-joining (NHEJ) DNA repair pathway1. Ku binds to double-stranded DNA ends and recruits other NHEJ factors, including LIG4 and DNA-PKcs. Although Ku can bind to double-stranded RNA (dsRNA)2 and trap mutated DNA-PKcs on ribosomal RNA3,4, the physiological role of the Ku–RNA interaction in otherwise wild-type cells remains unclear. Notably, Ku is dispensable for mouse development5,6 but is essential in human cells7. Despite their similar genome sizes, human cells express about 100-fold more Ku than mouse cells, suggesting that Ku has functions beyond NHEJ, possibly through a dose-sensitive interaction with dsRNA, which binds Ku 10 to 100 times more weakly than double-stranded DNA2,8. Here, Ku depletion induces profound interferon and NF-κB signalling via the dsRNA sensor MDA5–RIG-I and MAVS. Prolonged Ku degradation further activates other dsRNA sensors, especially PKR (also known as EIF2AK2) (suppressing translation) and OAS–RNaseL (cleaving ribosomal RNA), leading to growth arrest and cell death. Knockout of MAVS, RIG-I or MDA5 suppressed interferon signalling and, similarly to PKR knockout, partially rescued Ku-depleted human cells. Ku crosslinking and immunoprecipitation analyses revealed binding of Ku to diverse dsRNA molecules, predominantly stem-loops in primate-specific antisense Alu elements9 in introns and 3′ untranslated regions. Ku expression is higher in primates than in non-primate mammals and is tightly correlated with Alu expansion. Thus, Ku has a vital role in accommodating Alu expansion in primates, limiting dsRNA-induced innate immunity, which explains its high expression and essential function in human cells. Studies on the essentiality of Ku in human cells reveal that Ku interacts with diverse double-stranded RNA molecules, including antisense Alu, and enables tolerance of Alu sequence expansion in primates.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.