CNN-GRU高光谱成像对胃腺瘤性息肉及腺癌分类的分析。

IF 2.3
Xuzhe Wang, Xiaoqing Yue, Tianyi Hang, Shuai Liu
{"title":"CNN-GRU高光谱成像对胃腺瘤性息肉及腺癌分类的分析。","authors":"Xuzhe Wang, Xiaoqing Yue, Tianyi Hang, Shuai Liu","doi":"10.1002/jbio.70047","DOIUrl":null,"url":null,"abstract":"<p><p>Early identification of gastric adenomatous polyps and adenocarcinoma is vital for improving patient outcomes. This study proposes a hybrid CNN-GRU model to classify one-dimensional hyperspectral data from ex vivo gastric tissues, addressing limitations of traditional diagnostics. Our model innovatively combines convolutional neural networks (CNNs) and gated recurrent units (GRUs) to capture both spatial and sequential dependencies in spectral data. Experimental results demonstrate that our model achieves an accuracy of 86%, sensitivity of 88%, and specificity of 85%. Additionally, receiver operating characteristic analysis further underscores its robust performance with an area under the curve of 0.86, surpassing traditional methods and other baseline models. These findings highlight the potential of leveraging advanced machine learning techniques to enhance early diagnostic accuracy and treatment strategies. The proposed approach offers a promising tool for rapid, accurate differentiation of gastric lesions, underscoring the importance of integrating innovative technologies in clinical diagnostics.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e70047"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Hyperspectral Imaging Using CNN-GRU for Gastric Adenomatous Polyp and Adenocarcinoma Classification.\",\"authors\":\"Xuzhe Wang, Xiaoqing Yue, Tianyi Hang, Shuai Liu\",\"doi\":\"10.1002/jbio.70047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early identification of gastric adenomatous polyps and adenocarcinoma is vital for improving patient outcomes. This study proposes a hybrid CNN-GRU model to classify one-dimensional hyperspectral data from ex vivo gastric tissues, addressing limitations of traditional diagnostics. Our model innovatively combines convolutional neural networks (CNNs) and gated recurrent units (GRUs) to capture both spatial and sequential dependencies in spectral data. Experimental results demonstrate that our model achieves an accuracy of 86%, sensitivity of 88%, and specificity of 85%. Additionally, receiver operating characteristic analysis further underscores its robust performance with an area under the curve of 0.86, surpassing traditional methods and other baseline models. These findings highlight the potential of leveraging advanced machine learning techniques to enhance early diagnostic accuracy and treatment strategies. The proposed approach offers a promising tool for rapid, accurate differentiation of gastric lesions, underscoring the importance of integrating innovative technologies in clinical diagnostics.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e70047\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.70047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.70047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

早期识别胃腺瘤性息肉和腺癌对改善患者预后至关重要。本研究提出了一种混合CNN-GRU模型来分类来自离体胃组织的一维高光谱数据,解决了传统诊断的局限性。我们的模型创新地结合了卷积神经网络(cnn)和门控循环单元(gru)来捕获光谱数据中的空间和顺序依赖关系。实验结果表明,该模型的准确率为86%,灵敏度为88%,特异性为85%。此外,接收机工作特性分析进一步强调了其稳健性,曲线下面积为0.86,优于传统方法和其他基线模型。这些发现突出了利用先进的机器学习技术来提高早期诊断准确性和治疗策略的潜力。该方法为快速、准确地区分胃病变提供了一种有前途的工具,强调了在临床诊断中整合创新技术的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Hyperspectral Imaging Using CNN-GRU for Gastric Adenomatous Polyp and Adenocarcinoma Classification.

Early identification of gastric adenomatous polyps and adenocarcinoma is vital for improving patient outcomes. This study proposes a hybrid CNN-GRU model to classify one-dimensional hyperspectral data from ex vivo gastric tissues, addressing limitations of traditional diagnostics. Our model innovatively combines convolutional neural networks (CNNs) and gated recurrent units (GRUs) to capture both spatial and sequential dependencies in spectral data. Experimental results demonstrate that our model achieves an accuracy of 86%, sensitivity of 88%, and specificity of 85%. Additionally, receiver operating characteristic analysis further underscores its robust performance with an area under the curve of 0.86, surpassing traditional methods and other baseline models. These findings highlight the potential of leveraging advanced machine learning techniques to enhance early diagnostic accuracy and treatment strategies. The proposed approach offers a promising tool for rapid, accurate differentiation of gastric lesions, underscoring the importance of integrating innovative technologies in clinical diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信