组学研究中共享和格式化元数据的感知和技术障碍。

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2025-05-14 Epub Date: 2025-04-10 DOI:10.1016/j.xgen.2025.100845
Yu-Ning Huang, Viorel Munteanu, Michael I Love, Cynthia Flaire Ronkowski, Dhrithi Deshpande, Annie Wong-Beringer, Russell Corbett-Detig, Mihai Dimian, Jason H Moore, Lana X Garmire, T B K Reddy, Atul J Butte, Mark D Robinson, Eleazar Eskin, Malak S Abedalthagafi, Serghei Mangul
{"title":"组学研究中共享和格式化元数据的感知和技术障碍。","authors":"Yu-Ning Huang, Viorel Munteanu, Michael I Love, Cynthia Flaire Ronkowski, Dhrithi Deshpande, Annie Wong-Beringer, Russell Corbett-Detig, Mihai Dimian, Jason H Moore, Lana X Garmire, T B K Reddy, Atul J Butte, Mark D Robinson, Eleazar Eskin, Malak S Abedalthagafi, Serghei Mangul","doi":"10.1016/j.xgen.2025.100845","DOIUrl":null,"url":null,"abstract":"<p><p>Metadata, or \"data about data,\" is essential for organizing, understanding, and managing large-scale omics datasets. It enhances data discovery, integration, and interpretation, enabling reproducibility, reusability, and secondary analysis. However, metadata sharing remains hindered by perceptual and technical barriers, including the lack of uniform standards, privacy concerns, study design limitations, insufficient incentives, inadequate infrastructure, and a shortage of trained personnel. These challenges compromise data reliability and obstruct integrative meta-analyses. Addressing these issues requires standardization, education, stronger roles for journals and funding agencies, and improved incentives and infrastructure. Looking ahead, emerging technologies such as artificial intelligence and machine learning may offer promising solutions to automate metadata processes, increasing accuracy and scalability. Fostering a collaborative culture of metadata sharing will maximize the value of omics data, accelerating innovation and scientific discovery.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100845"},"PeriodicalIF":11.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143318/pdf/","citationCount":"0","resultStr":"{\"title\":\"Perceptual and technical barriers in sharing and formatting metadata accompanying omics studies.\",\"authors\":\"Yu-Ning Huang, Viorel Munteanu, Michael I Love, Cynthia Flaire Ronkowski, Dhrithi Deshpande, Annie Wong-Beringer, Russell Corbett-Detig, Mihai Dimian, Jason H Moore, Lana X Garmire, T B K Reddy, Atul J Butte, Mark D Robinson, Eleazar Eskin, Malak S Abedalthagafi, Serghei Mangul\",\"doi\":\"10.1016/j.xgen.2025.100845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metadata, or \\\"data about data,\\\" is essential for organizing, understanding, and managing large-scale omics datasets. It enhances data discovery, integration, and interpretation, enabling reproducibility, reusability, and secondary analysis. However, metadata sharing remains hindered by perceptual and technical barriers, including the lack of uniform standards, privacy concerns, study design limitations, insufficient incentives, inadequate infrastructure, and a shortage of trained personnel. These challenges compromise data reliability and obstruct integrative meta-analyses. Addressing these issues requires standardization, education, stronger roles for journals and funding agencies, and improved incentives and infrastructure. Looking ahead, emerging technologies such as artificial intelligence and machine learning may offer promising solutions to automate metadata processes, increasing accuracy and scalability. Fostering a collaborative culture of metadata sharing will maximize the value of omics data, accelerating innovation and scientific discovery.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100845\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.100845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

元数据,或“关于数据的数据”,对于组织、理解和管理大规模组学数据集是必不可少的。它增强了数据发现、集成和解释,支持再现性、可重用性和二次分析。然而,元数据共享仍然受到认知和技术障碍的阻碍,包括缺乏统一的标准、隐私问题、研究设计限制、激励措施不足、基础设施不足和训练有素的人员短缺。这些挑战损害了数据的可靠性,阻碍了综合元分析。解决这些问题需要标准化、教育、期刊和资助机构发挥更强的作用,以及改进激励机制和基础设施。展望未来,人工智能和机器学习等新兴技术可能会提供有前途的解决方案来自动化元数据处理,提高准确性和可扩展性。培养元数据共享的协作文化将使组学数据的价值最大化,加速创新和科学发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perceptual and technical barriers in sharing and formatting metadata accompanying omics studies.

Metadata, or "data about data," is essential for organizing, understanding, and managing large-scale omics datasets. It enhances data discovery, integration, and interpretation, enabling reproducibility, reusability, and secondary analysis. However, metadata sharing remains hindered by perceptual and technical barriers, including the lack of uniform standards, privacy concerns, study design limitations, insufficient incentives, inadequate infrastructure, and a shortage of trained personnel. These challenges compromise data reliability and obstruct integrative meta-analyses. Addressing these issues requires standardization, education, stronger roles for journals and funding agencies, and improved incentives and infrastructure. Looking ahead, emerging technologies such as artificial intelligence and machine learning may offer promising solutions to automate metadata processes, increasing accuracy and scalability. Fostering a collaborative culture of metadata sharing will maximize the value of omics data, accelerating innovation and scientific discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信