利用机器学习和可解释的人工智能,一种新的URS和激光碎石预测方法:来自FLEXOR国际数据库的结果。

IF 2.8 2区 医学 Q2 UROLOGY & NEPHROLOGY
Carlotta Nedbal, Vineet Gauhar, Sairam Adithya, Pietro Tramanzoli, Nithesh Naik, Shilpa Gite, Het Sevalia, Daniele Castellani, Frédéric Panthier, Jeremy Y C Teoh, Ben H Chew, Khi Yung Fong, Mohammed Boulmani, Nariman Gadzhiev, Abhishek Gajendra Singh, Thomas R W Herrmann, Olivier Traxer, Bhaskar K Somani
{"title":"利用机器学习和可解释的人工智能,一种新的URS和激光碎石预测方法:来自FLEXOR国际数据库的结果。","authors":"Carlotta Nedbal, Vineet Gauhar, Sairam Adithya, Pietro Tramanzoli, Nithesh Naik, Shilpa Gite, Het Sevalia, Daniele Castellani, Frédéric Panthier, Jeremy Y C Teoh, Ben H Chew, Khi Yung Fong, Mohammed Boulmani, Nariman Gadzhiev, Abhishek Gajendra Singh, Thomas R W Herrmann, Olivier Traxer, Bhaskar K Somani","doi":"10.1007/s00345-025-05551-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We developed Machine learning (ML) algorithms to predict ureteroscopy (URS) outcomes, offering insights into diagnosis and treatment planning, personalised care and improved clinical decision-making.</p><p><strong>Methods: </strong>FLEXOR is a large international multicentric database including 6669 patients treated with URS for urolithiasis from 2015 to 2023. Preoperative and postoperative(PO) correlations were investigated through 15 ML-trained algorithms. Outcomes included stone free status (SFS, at 3-month imaging follow up), intraoperative (PCS bleeding, ureteric/PCS injury, need for postoperative drainage) and PO complications (fever, sepsis, need for reintervention). ML was applied for the prediction, correlation and logistic regression analysis. Explainable AI emphasizes key features and their contributions to the output.</p><p><strong>Results: </strong>Extra Tree Classifier achieved the best accuracy (81%) in predicting SFS. PCS bleed was negatively linked with 'positive urine culture'(-0.08), 'tamsulosin'(-0.08), 'stone location'(-0.10), 'fibre optic scope'(-0.19), 'Moses Fibre'(-0.09), and 'TFL'(-0.09), and positively with 'elevated creatine'(0.25), 'fever'(0.11), and 'stone diameter'(0.21). 'PCS injury' and 'ureteric injury' both showed moderate correlation with 'elevated creatinine'(0.11), 'fever'(0.10), and 'lower pole stone'(0.09). 'Tamsulosin'(0.23) use, presence of 'multiple'(0.25) or 'lower pole'(0.25) stones, 'reusable scope'(0.17) and 'Moses Fibre'(0.2546) increased the risk for PO stent, while 'digital scope'(-0.13) or 'TFL'(-0.29) reduced it. 'Preoperative fever'(0.10), 'positive urine culture'(0.16), and 'stone diameter'(0.10) may play a role in 'PO fever' and 'sepsis'. SFS was mainly influenced by 'age'(0.12), 'preoperative fever'(0.09), 'multiple stones'(0.15), 'stone diameter'(0.17), 'Moses Fibre\"(0.15) and 'TFL'(-0.28).</p><p><strong>Conclusion: </strong>ML is valuable tool for accurately predicting outcomes by analysing pre-existing datasets. Our model demonstrated strong performance in outcomes and risks prediction, laying the groundwork for development of accessible predictive models.</p>","PeriodicalId":23954,"journal":{"name":"World Journal of Urology","volume":"43 1","pages":"294"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069140/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel predictive method for URS and laser lithotripsy using machine learning and explainable AI: results from the FLEXOR international database.\",\"authors\":\"Carlotta Nedbal, Vineet Gauhar, Sairam Adithya, Pietro Tramanzoli, Nithesh Naik, Shilpa Gite, Het Sevalia, Daniele Castellani, Frédéric Panthier, Jeremy Y C Teoh, Ben H Chew, Khi Yung Fong, Mohammed Boulmani, Nariman Gadzhiev, Abhishek Gajendra Singh, Thomas R W Herrmann, Olivier Traxer, Bhaskar K Somani\",\"doi\":\"10.1007/s00345-025-05551-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We developed Machine learning (ML) algorithms to predict ureteroscopy (URS) outcomes, offering insights into diagnosis and treatment planning, personalised care and improved clinical decision-making.</p><p><strong>Methods: </strong>FLEXOR is a large international multicentric database including 6669 patients treated with URS for urolithiasis from 2015 to 2023. Preoperative and postoperative(PO) correlations were investigated through 15 ML-trained algorithms. Outcomes included stone free status (SFS, at 3-month imaging follow up), intraoperative (PCS bleeding, ureteric/PCS injury, need for postoperative drainage) and PO complications (fever, sepsis, need for reintervention). ML was applied for the prediction, correlation and logistic regression analysis. Explainable AI emphasizes key features and their contributions to the output.</p><p><strong>Results: </strong>Extra Tree Classifier achieved the best accuracy (81%) in predicting SFS. PCS bleed was negatively linked with 'positive urine culture'(-0.08), 'tamsulosin'(-0.08), 'stone location'(-0.10), 'fibre optic scope'(-0.19), 'Moses Fibre'(-0.09), and 'TFL'(-0.09), and positively with 'elevated creatine'(0.25), 'fever'(0.11), and 'stone diameter'(0.21). 'PCS injury' and 'ureteric injury' both showed moderate correlation with 'elevated creatinine'(0.11), 'fever'(0.10), and 'lower pole stone'(0.09). 'Tamsulosin'(0.23) use, presence of 'multiple'(0.25) or 'lower pole'(0.25) stones, 'reusable scope'(0.17) and 'Moses Fibre'(0.2546) increased the risk for PO stent, while 'digital scope'(-0.13) or 'TFL'(-0.29) reduced it. 'Preoperative fever'(0.10), 'positive urine culture'(0.16), and 'stone diameter'(0.10) may play a role in 'PO fever' and 'sepsis'. SFS was mainly influenced by 'age'(0.12), 'preoperative fever'(0.09), 'multiple stones'(0.15), 'stone diameter'(0.17), 'Moses Fibre\\\"(0.15) and 'TFL'(-0.28).</p><p><strong>Conclusion: </strong>ML is valuable tool for accurately predicting outcomes by analysing pre-existing datasets. Our model demonstrated strong performance in outcomes and risks prediction, laying the groundwork for development of accessible predictive models.</p>\",\"PeriodicalId\":23954,\"journal\":{\"name\":\"World Journal of Urology\",\"volume\":\"43 1\",\"pages\":\"294\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069140/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Urology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00345-025-05551-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Urology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00345-025-05551-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们开发了机器学习(ML)算法来预测输尿管镜检查(URS)的结果,为诊断和治疗计划、个性化护理和改进临床决策提供见解。FLEXOR是一个大型的国际多中心数据库,包括6669例2015年至2023年接受尿石症尿路治疗的患者。通过15种ml训练算法研究术前和术后(PO)相关性。结果包括无结石状态(3个月影像学随访时的SFS)、术中(PCS出血、输尿管/PCS损伤、术后需要引流)和PO并发症(发热、败血症、需要再干预)。应用ML进行预测、相关及logistic回归分析。可解释的AI强调关键特征及其对输出的贡献。结果:Extra Tree Classifier对SFS的预测准确率最高(81%)。PCS出血与“尿培养阳性”(-0.08)、“坦索罗辛”(-0.08)、“结石位置”(-0.10)、“光纤镜”(-0.19)、“摩西纤维”(-0.09)和“TFL”(-0.09)呈负相关,与“肌酸升高”(0.25)、“发烧”(0.11)和“结石直径”(0.21)呈正相关。“PCS损伤”和“输尿管损伤”与“肌酐升高”(0.11)、“发热”(0.10)和“下极结石”(0.09)均有中度相关性。“坦索罗辛”(0.23)的使用,“多重”(0.25)或“下极”(0.25)结石的存在,“可重复使用镜”(0.17)和“摩西纤维”(0.2546)增加了PO支架的风险,而“数字镜”(-0.13)或“TFL”(-0.29)降低了风险。“术前发热”(0.10)、“尿培养阳性”(0.16)和“结石直径”(0.10)可能在“PO发热”和“败血症”中起作用。SFS主要受“年龄”(0.12)、“术前发热”(0.09)、“多发结石”(0.15)、“结石直径”(0.17)、“Moses纤维”(0.15)和“TFL”(-0.28)的影响。结论:ML是通过分析已有数据集准确预测结果的有价值的工具。我们的模型在结果和风险预测方面表现出色,为开发可访问的预测模型奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel predictive method for URS and laser lithotripsy using machine learning and explainable AI: results from the FLEXOR international database.

Purpose: We developed Machine learning (ML) algorithms to predict ureteroscopy (URS) outcomes, offering insights into diagnosis and treatment planning, personalised care and improved clinical decision-making.

Methods: FLEXOR is a large international multicentric database including 6669 patients treated with URS for urolithiasis from 2015 to 2023. Preoperative and postoperative(PO) correlations were investigated through 15 ML-trained algorithms. Outcomes included stone free status (SFS, at 3-month imaging follow up), intraoperative (PCS bleeding, ureteric/PCS injury, need for postoperative drainage) and PO complications (fever, sepsis, need for reintervention). ML was applied for the prediction, correlation and logistic regression analysis. Explainable AI emphasizes key features and their contributions to the output.

Results: Extra Tree Classifier achieved the best accuracy (81%) in predicting SFS. PCS bleed was negatively linked with 'positive urine culture'(-0.08), 'tamsulosin'(-0.08), 'stone location'(-0.10), 'fibre optic scope'(-0.19), 'Moses Fibre'(-0.09), and 'TFL'(-0.09), and positively with 'elevated creatine'(0.25), 'fever'(0.11), and 'stone diameter'(0.21). 'PCS injury' and 'ureteric injury' both showed moderate correlation with 'elevated creatinine'(0.11), 'fever'(0.10), and 'lower pole stone'(0.09). 'Tamsulosin'(0.23) use, presence of 'multiple'(0.25) or 'lower pole'(0.25) stones, 'reusable scope'(0.17) and 'Moses Fibre'(0.2546) increased the risk for PO stent, while 'digital scope'(-0.13) or 'TFL'(-0.29) reduced it. 'Preoperative fever'(0.10), 'positive urine culture'(0.16), and 'stone diameter'(0.10) may play a role in 'PO fever' and 'sepsis'. SFS was mainly influenced by 'age'(0.12), 'preoperative fever'(0.09), 'multiple stones'(0.15), 'stone diameter'(0.17), 'Moses Fibre"(0.15) and 'TFL'(-0.28).

Conclusion: ML is valuable tool for accurately predicting outcomes by analysing pre-existing datasets. Our model demonstrated strong performance in outcomes and risks prediction, laying the groundwork for development of accessible predictive models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Journal of Urology
World Journal of Urology 医学-泌尿学与肾脏学
CiteScore
6.80
自引率
8.80%
发文量
317
审稿时长
4-8 weeks
期刊介绍: The WORLD JOURNAL OF UROLOGY conveys regularly the essential results of urological research and their practical and clinical relevance to a broad audience of urologists in research and clinical practice. In order to guarantee a balanced program, articles are published to reflect the developments in all fields of urology on an internationally advanced level. Each issue treats a main topic in review articles of invited international experts. Free papers are unrelated articles to the main topic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信