Meng Zhao, Rutao Bian, Xuegong Xu, Junpeng Zhang, Li Zhang, Yi Zheng
{"title":"心衰中的鞘脂代谢和信号通路:从分子机制到治疗潜力。","authors":"Meng Zhao, Rutao Bian, Xuegong Xu, Junpeng Zhang, Li Zhang, Yi Zheng","doi":"10.2147/JIR.S515757","DOIUrl":null,"url":null,"abstract":"<p><p>Sphingolipids are essential components of cell membranes and lipoproteins. They are synthesized de novo in the endoplasmic reticulum and subsequently undergo various enzymatic modifications in different organelles, giving rise to a diverse range of biologically active compounds. These molecules play a critical role in regulating cell growth, senescence, migration, apoptosis, and signaling. In recent years, the sphingolipid metabolic pathway has been recognized as a key factor in heart failure (HF) pathophysiology. Abnormal levels of sphingolipid metabolites, such as ceramide (Cer) and sphingomyelin (SM), contribute to oxidative stress and inflammatory responses, ultimately promoting cardiomyocyte apoptosis. Conversely, sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) regulate vascular function and influence cardiac remodeling. Additionally, enzymes such as diacylglycerol acyltransferase 1 (DGAT1) and sphingosine-1-phosphate lyase 1 (SGPL1) modulate cardiac lipid metabolism. Given their role in HF progression, monitoring sphingolipid alterations offers potential as valuable biomarkers for assessing disease severity, prognosis, and diagnosis. Given the complexity of sphingolipid metabolism and its involvement in diverse regulatory biological processes, a comprehensive understanding of its roles at both the cellular and organismal levels in physiopathology remains incomplete. Therefore, this review aims to explore the physiological functions, regulatory mechanisms, and therapeutic potential of sphingolipid metabolism. It will summarize the specific molecular mechanisms driving key pathological processes in HF, including ventricular remodeling, myocardial fibrosis, vascular dysfunction, and metabolic disorders. Finally, the review will highlight targeted sphingolipid metabolites as potential therapeutic strategies, offering new insights into HF diagnosis and treatment, with the goal of advancing adjunctive clinical therapies.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"5477-5498"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034266/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sphingolipid Metabolism and Signalling Pathways in Heart Failure: From Molecular Mechanism to Therapeutic Potential.\",\"authors\":\"Meng Zhao, Rutao Bian, Xuegong Xu, Junpeng Zhang, Li Zhang, Yi Zheng\",\"doi\":\"10.2147/JIR.S515757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sphingolipids are essential components of cell membranes and lipoproteins. They are synthesized de novo in the endoplasmic reticulum and subsequently undergo various enzymatic modifications in different organelles, giving rise to a diverse range of biologically active compounds. These molecules play a critical role in regulating cell growth, senescence, migration, apoptosis, and signaling. In recent years, the sphingolipid metabolic pathway has been recognized as a key factor in heart failure (HF) pathophysiology. Abnormal levels of sphingolipid metabolites, such as ceramide (Cer) and sphingomyelin (SM), contribute to oxidative stress and inflammatory responses, ultimately promoting cardiomyocyte apoptosis. Conversely, sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) regulate vascular function and influence cardiac remodeling. Additionally, enzymes such as diacylglycerol acyltransferase 1 (DGAT1) and sphingosine-1-phosphate lyase 1 (SGPL1) modulate cardiac lipid metabolism. Given their role in HF progression, monitoring sphingolipid alterations offers potential as valuable biomarkers for assessing disease severity, prognosis, and diagnosis. Given the complexity of sphingolipid metabolism and its involvement in diverse regulatory biological processes, a comprehensive understanding of its roles at both the cellular and organismal levels in physiopathology remains incomplete. Therefore, this review aims to explore the physiological functions, regulatory mechanisms, and therapeutic potential of sphingolipid metabolism. It will summarize the specific molecular mechanisms driving key pathological processes in HF, including ventricular remodeling, myocardial fibrosis, vascular dysfunction, and metabolic disorders. Finally, the review will highlight targeted sphingolipid metabolites as potential therapeutic strategies, offering new insights into HF diagnosis and treatment, with the goal of advancing adjunctive clinical therapies.</p>\",\"PeriodicalId\":16107,\"journal\":{\"name\":\"Journal of Inflammation Research\",\"volume\":\"18 \",\"pages\":\"5477-5498\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034266/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inflammation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/JIR.S515757\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S515757","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Sphingolipid Metabolism and Signalling Pathways in Heart Failure: From Molecular Mechanism to Therapeutic Potential.
Sphingolipids are essential components of cell membranes and lipoproteins. They are synthesized de novo in the endoplasmic reticulum and subsequently undergo various enzymatic modifications in different organelles, giving rise to a diverse range of biologically active compounds. These molecules play a critical role in regulating cell growth, senescence, migration, apoptosis, and signaling. In recent years, the sphingolipid metabolic pathway has been recognized as a key factor in heart failure (HF) pathophysiology. Abnormal levels of sphingolipid metabolites, such as ceramide (Cer) and sphingomyelin (SM), contribute to oxidative stress and inflammatory responses, ultimately promoting cardiomyocyte apoptosis. Conversely, sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) regulate vascular function and influence cardiac remodeling. Additionally, enzymes such as diacylglycerol acyltransferase 1 (DGAT1) and sphingosine-1-phosphate lyase 1 (SGPL1) modulate cardiac lipid metabolism. Given their role in HF progression, monitoring sphingolipid alterations offers potential as valuable biomarkers for assessing disease severity, prognosis, and diagnosis. Given the complexity of sphingolipid metabolism and its involvement in diverse regulatory biological processes, a comprehensive understanding of its roles at both the cellular and organismal levels in physiopathology remains incomplete. Therefore, this review aims to explore the physiological functions, regulatory mechanisms, and therapeutic potential of sphingolipid metabolism. It will summarize the specific molecular mechanisms driving key pathological processes in HF, including ventricular remodeling, myocardial fibrosis, vascular dysfunction, and metabolic disorders. Finally, the review will highlight targeted sphingolipid metabolites as potential therapeutic strategies, offering new insights into HF diagnosis and treatment, with the goal of advancing adjunctive clinical therapies.
期刊介绍:
An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.