{"title":"功能化MXene M2XT2 (M = Ti, Zr, Sc)的电子性质X = c;T = 0, F)纳米带/带状硼罗芬纳米带异质结。","authors":"Mahdi Shirazinia, Edris Faizabadi","doi":"10.1039/d4na00629a","DOIUrl":null,"url":null,"abstract":"<p><p>The van der Waals heterojunctions and heterostructures developed from diverse materials demonstrate unparalleled potential by combining the favorable properties of their structural layers. In this investigation, we initially showcase the findings and evaluations derived from Density Functional Theory (DFT) of selected functionalized MXene nanoribbons (Ti<sub>2</sub>CO<sub>2</sub>, Zr<sub>2</sub>CO<sub>2</sub>, and Sc<sub>2</sub>CF<sub>2</sub>), along with four types of striped borophene nanoribbons. Nanoribbons come in two forms (armchair and zigzag) and have a variety of widths. Except for 9-, 12-, and 15-MZNRs, there are no band gaps on MXene nanoribbons arranged in a zigzag pattern. Contrastingly, band gaps emerge in MXene nanoribbons with armchair-shaped edges. It is also discovered that every selected SBNR is metallic in nature. Lastly, we carried out a computational analysis of the electronic characteristics of the MNR/SBNR heterojunctions. The significant thermodynamic stability of MNR/SBNR heterojunctions is suggested by the small lattice mismatch in the periodic direction and the negative formation energies. Our research demonstrates that all heterojunction samples exhibit metallic behavior. Additionally, we observed significant changes in total magnetization when applying electric fields of different directions and amplitudes to the heterojunction samples. These findings present promising avenues for enhancing and controlling multiferroics or electrically controllable antiferromagnets, as well as advancing spintronic devices. Moreover, they hold potential for memory devices and sensors.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047261/pdf/","citationCount":"0","resultStr":"{\"title\":\"The electronic properties of functionalized MXene M<sub>2</sub>XT<sub>2</sub> (M = Ti, Zr, Sc; X = C; T = O, F) nanoribbon/striped borophene nanoribbon heterojunctions.\",\"authors\":\"Mahdi Shirazinia, Edris Faizabadi\",\"doi\":\"10.1039/d4na00629a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The van der Waals heterojunctions and heterostructures developed from diverse materials demonstrate unparalleled potential by combining the favorable properties of their structural layers. In this investigation, we initially showcase the findings and evaluations derived from Density Functional Theory (DFT) of selected functionalized MXene nanoribbons (Ti<sub>2</sub>CO<sub>2</sub>, Zr<sub>2</sub>CO<sub>2</sub>, and Sc<sub>2</sub>CF<sub>2</sub>), along with four types of striped borophene nanoribbons. Nanoribbons come in two forms (armchair and zigzag) and have a variety of widths. Except for 9-, 12-, and 15-MZNRs, there are no band gaps on MXene nanoribbons arranged in a zigzag pattern. Contrastingly, band gaps emerge in MXene nanoribbons with armchair-shaped edges. It is also discovered that every selected SBNR is metallic in nature. Lastly, we carried out a computational analysis of the electronic characteristics of the MNR/SBNR heterojunctions. The significant thermodynamic stability of MNR/SBNR heterojunctions is suggested by the small lattice mismatch in the periodic direction and the negative formation energies. Our research demonstrates that all heterojunction samples exhibit metallic behavior. Additionally, we observed significant changes in total magnetization when applying electric fields of different directions and amplitudes to the heterojunction samples. These findings present promising avenues for enhancing and controlling multiferroics or electrically controllable antiferromagnets, as well as advancing spintronic devices. Moreover, they hold potential for memory devices and sensors.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4na00629a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00629a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The electronic properties of functionalized MXene M2XT2 (M = Ti, Zr, Sc; X = C; T = O, F) nanoribbon/striped borophene nanoribbon heterojunctions.
The van der Waals heterojunctions and heterostructures developed from diverse materials demonstrate unparalleled potential by combining the favorable properties of their structural layers. In this investigation, we initially showcase the findings and evaluations derived from Density Functional Theory (DFT) of selected functionalized MXene nanoribbons (Ti2CO2, Zr2CO2, and Sc2CF2), along with four types of striped borophene nanoribbons. Nanoribbons come in two forms (armchair and zigzag) and have a variety of widths. Except for 9-, 12-, and 15-MZNRs, there are no band gaps on MXene nanoribbons arranged in a zigzag pattern. Contrastingly, band gaps emerge in MXene nanoribbons with armchair-shaped edges. It is also discovered that every selected SBNR is metallic in nature. Lastly, we carried out a computational analysis of the electronic characteristics of the MNR/SBNR heterojunctions. The significant thermodynamic stability of MNR/SBNR heterojunctions is suggested by the small lattice mismatch in the periodic direction and the negative formation energies. Our research demonstrates that all heterojunction samples exhibit metallic behavior. Additionally, we observed significant changes in total magnetization when applying electric fields of different directions and amplitudes to the heterojunction samples. These findings present promising avenues for enhancing and controlling multiferroics or electrically controllable antiferromagnets, as well as advancing spintronic devices. Moreover, they hold potential for memory devices and sensors.