Xiangyang Zhang, Yang Chen, Changjing Cai, Yifeng Wang, Jun Tan, Zijie Fang, Le Wei, Zhuchen Shao, Liwen Wang, Tiezheng Qi, Yihan Liu, Zhaohui Jiang, Yin Li, Ying Han, Tibera Kagemulo Rugambwa, Shan Zeng, Haoqian Wang, Hong Shen, Yongbing Zhang
{"title":"人工智能直接从乳腺癌组织学预测多类分子特征和亚型:一项多中心回顾性研究。","authors":"Xiangyang Zhang, Yang Chen, Changjing Cai, Yifeng Wang, Jun Tan, Zijie Fang, Le Wei, Zhuchen Shao, Liwen Wang, Tiezheng Qi, Yihan Liu, Zhaohui Jiang, Yin Li, Ying Han, Tibera Kagemulo Rugambwa, Shan Zeng, Haoqian Wang, Hong Shen, Yongbing Zhang","doi":"10.1097/JS9.0000000000002220","DOIUrl":null,"url":null,"abstract":"<p><p>Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.</p>","PeriodicalId":14401,"journal":{"name":"International journal of surgery","volume":"111 4","pages":"3109-3114"},"PeriodicalIF":12.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence predicts multiclass molecular signatures and subtypes directly from breast cancer histology: a multicenter retrospective study.\",\"authors\":\"Xiangyang Zhang, Yang Chen, Changjing Cai, Yifeng Wang, Jun Tan, Zijie Fang, Le Wei, Zhuchen Shao, Liwen Wang, Tiezheng Qi, Yihan Liu, Zhaohui Jiang, Yin Li, Ying Han, Tibera Kagemulo Rugambwa, Shan Zeng, Haoqian Wang, Hong Shen, Yongbing Zhang\",\"doi\":\"10.1097/JS9.0000000000002220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.</p>\",\"PeriodicalId\":14401,\"journal\":{\"name\":\"International journal of surgery\",\"volume\":\"111 4\",\"pages\":\"3109-3114\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/JS9.0000000000002220\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/JS9.0000000000002220","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
Artificial intelligence predicts multiclass molecular signatures and subtypes directly from breast cancer histology: a multicenter retrospective study.
Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.
期刊介绍:
The International Journal of Surgery (IJS) has a broad scope, encompassing all surgical specialties. Its primary objective is to facilitate the exchange of crucial ideas and lines of thought between and across these specialties.By doing so, the journal aims to counter the growing trend of increasing sub-specialization, which can result in "tunnel-vision" and the isolation of significant surgical advancements within specific specialties.