通过激光冲击强化提高嵌入式智能元件光纤传感器的高温回弹性。

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-04-07 DOI:10.1364/OE.549584
Shuda Zhong, Kehao Zhao, Dinh Son Nguyen, Qiuchi Zhu, Ran Zou, Zekun Wu, Qirui Wang, Guangyin Zhang, Guangqun Ma, Yuqi Li, Mohamed A S Zaghloul, Albert C To, Yongfeng Lu, Kevin P Chen
{"title":"通过激光冲击强化提高嵌入式智能元件光纤传感器的高温回弹性。","authors":"Shuda Zhong, Kehao Zhao, Dinh Son Nguyen, Qiuchi Zhu, Ran Zou, Zekun Wu, Qirui Wang, Guangyin Zhang, Guangqun Ma, Yuqi Li, Mohamed A S Zaghloul, Albert C To, Yongfeng Lu, Kevin P Chen","doi":"10.1364/OE.549584","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the use of laser shock peening (LSP) to enhance material properties and high-temperature performance of fiber-sensor-fused smart parts fabricated by additive manufacturing (AM) methods. Using embedded fiber sensors as distributed strain gauges, the study demonstrates that LSP can induce compressive strains of up to 130 µε on fiber embedded 1-mm below metal surfaces. The electron backscatter diffraction (EBSD) analysis shows that, with optimized LSP parameters, the metallic matrix undergoes substantial microstructural refinement, resulting in denser structures. Thermal cycling tests showed that the LSP process can increase fiber slippage temperatures by more than 50 <sup>o</sup>C. This work shows that the LSP process is an effective room-temperature process for enhancing both surface quality and increasing fiber slippage threshold under both thermal and mechanical stress.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 7","pages":"16003-16013"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving high temperature resilience of fiber sensor embedded smart components through laser shock peening.\",\"authors\":\"Shuda Zhong, Kehao Zhao, Dinh Son Nguyen, Qiuchi Zhu, Ran Zou, Zekun Wu, Qirui Wang, Guangyin Zhang, Guangqun Ma, Yuqi Li, Mohamed A S Zaghloul, Albert C To, Yongfeng Lu, Kevin P Chen\",\"doi\":\"10.1364/OE.549584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the use of laser shock peening (LSP) to enhance material properties and high-temperature performance of fiber-sensor-fused smart parts fabricated by additive manufacturing (AM) methods. Using embedded fiber sensors as distributed strain gauges, the study demonstrates that LSP can induce compressive strains of up to 130 µε on fiber embedded 1-mm below metal surfaces. The electron backscatter diffraction (EBSD) analysis shows that, with optimized LSP parameters, the metallic matrix undergoes substantial microstructural refinement, resulting in denser structures. Thermal cycling tests showed that the LSP process can increase fiber slippage temperatures by more than 50 <sup>o</sup>C. This work shows that the LSP process is an effective room-temperature process for enhancing both surface quality and increasing fiber slippage threshold under both thermal and mechanical stress.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"33 7\",\"pages\":\"16003-16013\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.549584\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.549584","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了使用激光冲击强化(LSP)来提高增材制造(AM)方法制造的光纤传感器熔接智能部件的材料性能和高温性能。使用嵌入式光纤传感器作为分布式应变片,研究表明LSP可以在金属表面以下1mm的光纤上诱导高达130 μ ε的压缩应变。电子背散射衍射(EBSD)分析表明,在优化的LSP参数下,金属基体的显微组织得到了大量细化,结构更加致密。热循环测试表明,LSP处理可以使光纤滑移温度提高50℃以上。该研究表明,LSP工艺是一种在热应力和机械应力下提高表面质量和增加纤维滑移阈值的有效室温工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving high temperature resilience of fiber sensor embedded smart components through laser shock peening.

This study explores the use of laser shock peening (LSP) to enhance material properties and high-temperature performance of fiber-sensor-fused smart parts fabricated by additive manufacturing (AM) methods. Using embedded fiber sensors as distributed strain gauges, the study demonstrates that LSP can induce compressive strains of up to 130 µε on fiber embedded 1-mm below metal surfaces. The electron backscatter diffraction (EBSD) analysis shows that, with optimized LSP parameters, the metallic matrix undergoes substantial microstructural refinement, resulting in denser structures. Thermal cycling tests showed that the LSP process can increase fiber slippage temperatures by more than 50 oC. This work shows that the LSP process is an effective room-temperature process for enhancing both surface quality and increasing fiber slippage threshold under both thermal and mechanical stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信