Zeta转换器:基于Kharitonov多项式的区间降阶建模。

V P Meena, V P Singh
{"title":"Zeta转换器:基于Kharitonov多项式的区间降阶建模。","authors":"V P Meena, V P Singh","doi":"10.1016/j.isatra.2025.04.014","DOIUrl":null,"url":null,"abstract":"<p><p>This research proposes a continuous interval reduced-order model (ROM) for a fourth-order constant interval Zeta converter using Kharitonov polynomials. First, the fourth-order continuous interval transfer function is obtained using interval arithmetic for the Zeta converter. Then, this model is reduced to first, second, and third orders using Kharitonov polynomials. For this reduction, Kharitonov polynomials are derived for the denominator, and a Routh table is constructed for these polynomials. The ROM denominator is then obtained from the Routh table. The numerator is determined using time-moments (TiMo) and Markov parameters (MaPa) matching. Comparisons with other models demonstrate the efficacy of our method. Step and impulse responses, as well as the Bode and Nichols plots for the lower and upper bounds, are provided to illustrate the method's effectiveness. Time-domain specifications (TDS) and performance error criterion (PEC) are tabulated to support a comparative study. These results show that our method effectively reduces the order of the Zeta converter while maintaining accuracy and performance.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zeta converter: Kharitonov polynomials based interval reduced order modeling.\",\"authors\":\"V P Meena, V P Singh\",\"doi\":\"10.1016/j.isatra.2025.04.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research proposes a continuous interval reduced-order model (ROM) for a fourth-order constant interval Zeta converter using Kharitonov polynomials. First, the fourth-order continuous interval transfer function is obtained using interval arithmetic for the Zeta converter. Then, this model is reduced to first, second, and third orders using Kharitonov polynomials. For this reduction, Kharitonov polynomials are derived for the denominator, and a Routh table is constructed for these polynomials. The ROM denominator is then obtained from the Routh table. The numerator is determined using time-moments (TiMo) and Markov parameters (MaPa) matching. Comparisons with other models demonstrate the efficacy of our method. Step and impulse responses, as well as the Bode and Nichols plots for the lower and upper bounds, are provided to illustrate the method's effectiveness. Time-domain specifications (TDS) and performance error criterion (PEC) are tabulated to support a comparative study. These results show that our method effectively reduces the order of the Zeta converter while maintaining accuracy and performance.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2025.04.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.04.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用Kharitonov多项式,提出了一种四阶常间隔Zeta变换器的连续区间降阶模型。首先,利用区间算法求出Zeta变换器的四阶连续区间传递函数。然后,使用Kharitonov多项式将该模型降阶为一阶、二阶和三阶。对于这种简化,推导了分母的Kharitonov多项式,并为这些多项式构造了一个Routh表。然后从劳斯表中得到ROM分母。利用时间矩(TiMo)和马尔可夫参数(MaPa)匹配确定分子。与其他模型的比较表明了该方法的有效性。给出了阶跃响应和脉冲响应,以及下界和上界的Bode和Nichols图,以说明该方法的有效性。时域规格(TDS)和性能误差准则(PEC)的表格,以支持比较研究。结果表明,该方法在保持精度和性能的同时,有效地降低了Zeta转换器的阶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zeta converter: Kharitonov polynomials based interval reduced order modeling.

This research proposes a continuous interval reduced-order model (ROM) for a fourth-order constant interval Zeta converter using Kharitonov polynomials. First, the fourth-order continuous interval transfer function is obtained using interval arithmetic for the Zeta converter. Then, this model is reduced to first, second, and third orders using Kharitonov polynomials. For this reduction, Kharitonov polynomials are derived for the denominator, and a Routh table is constructed for these polynomials. The ROM denominator is then obtained from the Routh table. The numerator is determined using time-moments (TiMo) and Markov parameters (MaPa) matching. Comparisons with other models demonstrate the efficacy of our method. Step and impulse responses, as well as the Bode and Nichols plots for the lower and upper bounds, are provided to illustrate the method's effectiveness. Time-domain specifications (TDS) and performance error criterion (PEC) are tabulated to support a comparative study. These results show that our method effectively reduces the order of the Zeta converter while maintaining accuracy and performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信