Yayra T Tuani, Navid J Ayon, Rosemary M Onjiko, Sam B Choi, Shruti Yadav, Ioannis Eleftherianos, Peter Nemes
{"title":"毛细管电泳电喷雾电离质谱分析揭示黑胃果蝇在线虫感染过程中的代谢扰动。","authors":"Yayra T Tuani, Navid J Ayon, Rosemary M Onjiko, Sam B Choi, Shruti Yadav, Ioannis Eleftherianos, Peter Nemes","doi":"10.3390/molecules30092023","DOIUrl":null,"url":null,"abstract":"<p><p><i>Drosophila melanogaster</i> is broadly used to model host-pathogen interactions. Entomopathogenic nematodes are excellent research tools for dissecting the molecular and functional basis of parasitism and the host's anti-parasitic response. In this work, we used discovery metabolomics to explore the differences in the metabolome composition of wild type <i>D. melanogaster</i> larvae that were infected with symbiotic nematodes (<i>Steinernema carpocapsae</i> carrying <i>Xenorhabdus nematophila</i> mutualistic bacteria) or axenic nematodes (<i>S. carpocapsae</i> lacking their bacterial partners). Benefiting from their high separation power, sensitivity, and compatibility with low amounts of the starting metabolome, we leveraged microanalytical capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS) to profile the small (<500 Da) polar portion of the metabolome among these experimental treatments. We detected and quantified 122 different small molecules, of which 50 were identified with high confidence. Supervised multivariate analysis revealed that the infection was paralleled with changes in amino acid biosynthesis (arginine, phenylalanine, tryptophan, and tyrosine), metabolism (alanine, arginine, aspartate, glutamate, glycine, proline, serine, and threonine), and classical signalling (aspartate, γ-aminobutyrate, glutamate, and pyridoxine). This study demonstrates the ability of high-sensitivity CE-ESI-MS to uncover metabolic perturbations during infection. The results from the metadata may facilitate the design of targeted studies to explore small biomolecules and their functions during host-pathogen interaction.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073451/pdf/","citationCount":"0","resultStr":"{\"title\":\"Capillary Electrophoresis Electrospray Ionization Mass Spectrometry Reveals Metabolic Perturbations During Nematode Infection in <i>Drosophila melanogaster</i>.\",\"authors\":\"Yayra T Tuani, Navid J Ayon, Rosemary M Onjiko, Sam B Choi, Shruti Yadav, Ioannis Eleftherianos, Peter Nemes\",\"doi\":\"10.3390/molecules30092023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Drosophila melanogaster</i> is broadly used to model host-pathogen interactions. Entomopathogenic nematodes are excellent research tools for dissecting the molecular and functional basis of parasitism and the host's anti-parasitic response. In this work, we used discovery metabolomics to explore the differences in the metabolome composition of wild type <i>D. melanogaster</i> larvae that were infected with symbiotic nematodes (<i>Steinernema carpocapsae</i> carrying <i>Xenorhabdus nematophila</i> mutualistic bacteria) or axenic nematodes (<i>S. carpocapsae</i> lacking their bacterial partners). Benefiting from their high separation power, sensitivity, and compatibility with low amounts of the starting metabolome, we leveraged microanalytical capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS) to profile the small (<500 Da) polar portion of the metabolome among these experimental treatments. We detected and quantified 122 different small molecules, of which 50 were identified with high confidence. Supervised multivariate analysis revealed that the infection was paralleled with changes in amino acid biosynthesis (arginine, phenylalanine, tryptophan, and tyrosine), metabolism (alanine, arginine, aspartate, glutamate, glycine, proline, serine, and threonine), and classical signalling (aspartate, γ-aminobutyrate, glutamate, and pyridoxine). This study demonstrates the ability of high-sensitivity CE-ESI-MS to uncover metabolic perturbations during infection. The results from the metadata may facilitate the design of targeted studies to explore small biomolecules and their functions during host-pathogen interaction.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 9\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073451/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30092023\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30092023","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Capillary Electrophoresis Electrospray Ionization Mass Spectrometry Reveals Metabolic Perturbations During Nematode Infection in Drosophila melanogaster.
Drosophila melanogaster is broadly used to model host-pathogen interactions. Entomopathogenic nematodes are excellent research tools for dissecting the molecular and functional basis of parasitism and the host's anti-parasitic response. In this work, we used discovery metabolomics to explore the differences in the metabolome composition of wild type D. melanogaster larvae that were infected with symbiotic nematodes (Steinernema carpocapsae carrying Xenorhabdus nematophila mutualistic bacteria) or axenic nematodes (S. carpocapsae lacking their bacterial partners). Benefiting from their high separation power, sensitivity, and compatibility with low amounts of the starting metabolome, we leveraged microanalytical capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS) to profile the small (<500 Da) polar portion of the metabolome among these experimental treatments. We detected and quantified 122 different small molecules, of which 50 were identified with high confidence. Supervised multivariate analysis revealed that the infection was paralleled with changes in amino acid biosynthesis (arginine, phenylalanine, tryptophan, and tyrosine), metabolism (alanine, arginine, aspartate, glutamate, glycine, proline, serine, and threonine), and classical signalling (aspartate, γ-aminobutyrate, glutamate, and pyridoxine). This study demonstrates the ability of high-sensitivity CE-ESI-MS to uncover metabolic perturbations during infection. The results from the metadata may facilitate the design of targeted studies to explore small biomolecules and their functions during host-pathogen interaction.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.